Forgot password?
 Create new account
View 176|Reply 6

[函数] 三角求值

[Copy link]

410

Threads

1045

Posts

110K

Credits

Credits
11582

Show all posts

lemondian Posted at 2024-12-6 08:57:34 |Read mode
求$\csc\dfrac{\pi}{14}-4\cos\dfrac{2\pi}{7}$的值。

1

Threads

104

Posts

1771

Credits

Credits
1771

Show all posts

Aluminiumor Posted at 2024-12-6 12:12:53
令 $\theta=\dfrac{\pi}{7},\cos\theta=t$ 则
$$\cos(7\theta)=\left(64t^6-112t^4+56t^2-7\right)t=-1$$
$$\Longrightarrow (t+1)(8t^3-4t^2-4t+1)^2=0$$
显然 $t\neq-1$,故 $8t^3-4t^2-4t+1=0$
$$\begin{align*}
&\csc\dfrac{\pi}{14}-4\cos\dfrac{2\pi}{7}\\
=&\frac{1}{\cos\dfrac{3\pi}{7}}-4\cos\dfrac{2\pi}{7}\\
=&\frac{1}{4t^3-3t}-4(2t^2-1)\\
=&\frac{(8t^3-4t^2-4t+1)(4t^2+2t-1)}{t(3-4t^2)}+2\\
=&2
\end{align*}$$

700

Threads

110K

Posts

910K

Credits

Credits
94177
QQ

Show all posts

kuing Posted at 2024-12-6 12:23:40
Aluminiumor 发表于 2024-12-6 12:12
...
$8t^3-4t^2-4t+1=0$
...
又看到了熟悉的方程😃kuing.cjhb.site/forum.php?mod=viewthread&tid=13126

Comment

能否根据该帖的结果,利用韦达定理解决这题呢?😀  Posted at 2024-12-6 12:50

1

Threads

104

Posts

1771

Credits

Credits
1771

Show all posts

Aluminiumor Posted at 2024-12-6 12:34:51
复数法:
熟知 $\cos\theta=\dfrac{e^{i\theta}+e^{-i\theta}}{2}$ 令 $t=e^{\frac{i\pi}{7}}$ 则 $t^7+1=0$
又 $t\neq-1$ 故 $t^6-t^5+t^4-t^3+t^2-t+1=0$
$$\begin{align*}
&\csc\dfrac{\pi}{14}-4\cos\dfrac{2\pi}{7}\\
=&\frac{1}{\cos\dfrac{3\pi}{7}}-4\cos\dfrac{2\pi}{7}\\
=&\frac{2}{t^3+\frac{1}{t^3}}-2(t^2+\frac{1}{t^2})\\
=&-\frac{2(t^6-t^5+t^4-t^3+t^2-t+1)(t^4+t^3+t^2+t+1)}{t^2(t^6+1)}+2\\
=&2
\end{align*}$$

700

Threads

110K

Posts

910K

Credits

Credits
94177
QQ

Show all posts

kuing Posted at 2024-12-6 13:56:57
点评  Aluminiumor  能否根据该帖的结果,利用韦达定理解决这题呢?😀  发表于 2024-12-6 12:50

可以的,由
\[\cos\frac\pi7+\cos\frac{3\pi}7+\cos\frac{5\pi}7=\frac12,\]
第一三项和差化积即
\[\cos\frac{3\pi}7+2\cos\frac{2\pi}7\cos\frac{3\pi}7=\frac12,\]
所以
\[\cos\frac{2\pi}7=\frac1{4\cos\frac{3\pi}7}-\frac12=\frac14\csc\frac\pi{14}-\frac12,\]
代入即得原式 `=2`。

425

Threads

1554

Posts

110K

Credits

Credits
11765

Show all posts

realnumber Posted at 2024-12-6 22:27:16
Last edited by realnumber at 2024-12-6 22:37:00接2楼的,通分,那个分子分母同乘$2\sin \frac{3\pi}{7}$
\[ =\frac{2\sin (\frac{2\pi}{7}+\frac{\pi}{7})-4\cos \frac{2\pi}{7} \sin \frac{\pi}{7}}{\sin \frac{\pi}{7} } =4\cos ^2  \frac{\pi}{7}-2\cos \frac{2\pi}{7}=2 \]
前面两角和公式展开.第2个等号,分子分母约去了$\sin \frac{\pi}{7}$.应该是楼上的换个写法.

手机版Mobile version|Leisure Math Forum

2025-4-21 01:23 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list