|
Author |
hbghlyj
Posted 2025-5-1 01:05
\begin{aligned}
& \csc z=\frac{1}{z}-2 z\left(\frac{1}{z^2-\pi^2}-\frac{1}{z^2-4 \pi^2}+\frac{1}{z^2-9 \pi^2}-\cdots\right) \\
& \sec z=\pi\left(\frac{1}{(\pi / 2)^2-z^2}-\frac{3}{(3 \pi / 2)^2-z^2}+\frac{5}{(5 \pi / 2)^2-z^2}-\cdots\right) \\
& \tan z=2 z\left(\frac{1}{(\pi / 2)^2-z^2}+\frac{1}{(3 \pi / 2)^2-z^2}+\frac{1}{(5 \pi / 2)^2-z^2}+\cdots\right) \\
& \cot z=\frac{1}{z}+2 z\left(\frac{1}{z^2-\pi^2}+\frac{1}{z^2-4 \pi^2}+\frac{1}{z^2-9 \pi^2}+\cdots\right) \\
& \operatorname{csch} z=\frac{1}{z}-2 z\left(\frac{1}{z^2+\pi^2}-\frac{1}{z^2+4 \pi^2}+\frac{1}{z^2+9 \pi^2}-\cdots\right) \\
& \operatorname{sech} z=\pi\left(\frac{1}{(\pi / 2)^2+z^2}-\frac{3}{(3 \pi / 2)^2+z^2}+\frac{5}{(5 \pi / 2)^2+z^2}-\cdots\right) \\
& \tanh z=2 z\left(\frac{1}{z^2+(\pi / 2)^2}+\frac{1}{z^2+(3 \pi / 2)^2}+\frac{1}{z^2+(5 \pi / 2)^2}+\cdots\right) \\
& \operatorname{coth} z=\frac{1}{z}+2 z\left(\frac{1}{z^2+\pi^2}+\frac{1}{z^2+4 \pi^2}+\frac{1}{z^2+9 \pi^2}+\cdots\right)
\end{aligned} |
|