Forgot password?
 Create new account
View 208|Reply 8

多项式倒数 求和

[Copy link]

3146

Threads

8493

Posts

610K

Credits

Credits
66158
QQ

Show all posts

hbghlyj Posted at 2023-8-13 21:18:00 |Read mode
Last edited by hbghlyj at 2023-8-14 14:30:00\begin{aligned}
\sum_{n=0}^{\infty} \frac{1}{n^2+n+k}&=\pi \frac{\tan (\sqrt{1-4 k}\frac \pi 2)}{\sqrt{1-4 k}}\\
\sum_{n=1}^{\infty} \frac{1}{n(2 n+1)(2 n-1)}&=\log (4)-1 \\
\sum_{n=1}^{\infty} \frac{(-1)^n}{n(2 n+1)(2 n-1)}&=\log (2)-1
\end{aligned}

Related collections:

701

Threads

110K

Posts

910K

Credits

Credits
94172
QQ

Show all posts

kuing Posted at 2023-8-13 23:27:59
第一个和以前这帖有点像:kuing.cjhb.site/forum.php?mod=viewthread&tid=1668
和这个也不知有没有关联:kuing.cjhb.site/forum.php?mod=viewthread&tid=7822

84

Threads

436

Posts

5432

Credits

Credits
5432

Show all posts

tommywong Posted at 2023-8-14 09:05:24
答咗一個先

en.wikipedia.org/wiki/Mittag-Leffler%27s_theorem

$\displaystyle \tan(z) = \sum_{n=0}^\infty \frac{8z}{(2n+1)^2\pi^2-4z^2}$
$\displaystyle \sum_{n=0}^\infty \frac{1}{(n+\dfrac{1}{2})^2-x^2}=\dfrac{\pi\tan(\pi x)}{2x}$

Put $~x=\dfrac{\sqrt{1-4k}}{2}$
$\displaystyle \sum_{n=0}^{\infty} \frac{1}{n^2+n+k}=\pi \frac{\tan (\sqrt{1-4 k}\frac \pi 2) }{\sqrt{1-4 k}}$

Comment

奶思  Posted at 2023-8-14 10:29
现充已死,エロ当立。
维基用户页:https://zh.wikipedia.org/wiki/User:Tttfffkkk
Notable algebra methods:https://artofproblemsolving.com/community/c728438
《方幂和及其推广和式》 数学学习与研究2016.

418

Threads

1628

Posts

110K

Credits

Credits
11891

Show all posts

abababa Posted at 2023-8-14 12:42:32
第二个n=0时没有定义吧,觉得是从n=1开始
\[\sum_{n=1}^{\infty}\left(\frac{1}{2n+1}-\frac{1}{2n}\right)+\sum_{n=1}^{\infty}\left(\frac{1}{2n-1}-\frac{1}{2n}\right)=\ln2-1+\ln2=2\ln2-1\]

3146

Threads

8493

Posts

610K

Credits

Credits
66158
QQ

Show all posts

 Author| hbghlyj Posted at 2023-8-14 14:31:04
abababa 发表于 2023-8-14 12:42
第二个n=0时没有定义吧,觉得是从n=1开始
\[\sum_{n=1}^{\infty}\left(\frac{1}{2n+1}-\frac{1}{2n}\right) ...
已修改。
谢谢。原来就是log级数啊。

3146

Threads

8493

Posts

610K

Credits

Credits
66158
QQ

Show all posts

 Author| hbghlyj Posted at 2023-8-14 15:09:14
Last edited by hbghlyj at 2023-8-14 19:45:00Make a Taylor series
$$  \sum_{n=1}^{\infty} \frac{x^n}{n(2n+1)(2n-1)} = \log(1-x) + (1+x) {\rm arctanh}(\sqrt{x})/\sqrt{x} $$
Take limit $x \to 1$.

84

Threads

436

Posts

5432

Credits

Credits
5432

Show all posts

tommywong Posted at 2023-8-14 19:40:07
$\displaystyle \sum_{n=1}^{\infty} \frac{(-1)^n}{n(2n+1)(2n-1)}
=\sum_{n=1}^{\infty} \left(\frac{(-1)^n}{2n+1}+\dfrac{(-1)^n}{2n-1}\right)-\sum_{n=1}^{\infty}\frac{(-1)^n}{n}=-1+\ln 2$
现充已死,エロ当立。
维基用户页:https://zh.wikipedia.org/wiki/User:Tttfffkkk
Notable algebra methods:https://artofproblemsolving.com/community/c728438
《方幂和及其推广和式》 数学学习与研究2016.

手机版Mobile version|Leisure Math Forum

2025-4-20 22:04 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list