Forgot password?
 Register account
View 410|Reply 7

[代数/数论] 令 $F$ 为域,令 $f(x)\in F[x]$ 为多项式

[Copy link]

46

Threads

323

Posts

2834

Credits

Credits
2834

Show all posts

业余的业余 Posted 2023-11-4 23:47 |Read mode
Last edited by 业余的业余 2023-11-9 21:47令 $F$ 为域,令 $f(x)\in F[x]$ 为多项式
  • 求证存在有限度数的域扩展 $E/F$, 使 $f(x)$ 在其中可完全分解为线性多项式的乘积。
  • 假设 $f(x)$ 在 $E[x]$ 中因式分解为 $a_0(x - \alpha_1)\cdots(x - \alpha_n)$, 其中 $a_0\in F$ and $\alpha_1,\ldots,\alpha_n\in E$. 求证包含 $F$ 和 $\alpha_1,\ldots,\alpha_n$ 的最小环,记为  $F[\alpha_1,\ldots,\alpha_n]$ 是 $E$ 的一个子域。


包含 $F$ 和 $f(x)$ 所有根的 $E$ 的子域,称为 $f(x)$ 的 splitting field.

Related threads

3153

Threads

7905

Posts

610K

Credits

Credits
64091
QQ

Show all posts

hbghlyj Posted 2023-11-5 00:10

2

Last edited by hbghlyj 2023-11-5 15:01sites.millersville.edu/bikenaga/abstract-alge … olynomial-rings.html
Theorem. $\dfrac{F[x]}{\langle p(x) \rangle}$ is a field if and only if $p(x)$ is irreducible.

Rate

Number of participants 1威望 +2 Collapse Reason
业余的业余 + 2 虽然还看不懂,但老兄的渊博让我震撼。.

View Rating Log

3153

Threads

7905

Posts

610K

Credits

Credits
64091
QQ

Show all posts

hbghlyj Posted 2023-11-5 00:20

1

Last edited by hbghlyj 2023-11-5 14:58math.stackexchange.com/questions/1177642

Rate

Number of participants 1威望 +2 Collapse Reason
业余的业余 + 2 先点赞再慢慢理解。

View Rating Log

46

Threads

323

Posts

2834

Credits

Credits
2834

Show all posts

 Author| 业余的业余 Posted 2023-11-5 00:56
Last edited by 业余的业余 2023-11-10 12:23参考这份材料:math.ucdavis.edu/~egorskiy/MAT150C-s17/Galois.pdf

Proposition 2: A splitting field alwyas exists.
其后有完整的证明。

46

Threads

323

Posts

2834

Credits

Credits
2834

Show all posts

 Author| 业余的业余 Posted 2023-11-5 01:21
Last edited by 业余的业余 2023-11-8 00:32再利用此楼。实际是在 $7$ 楼之后。

后来想想第二问不需要用到 $7$ 楼的大杀器。我需要的只是从 $f(x)$ 的根 $a$ 的algebraic 证明存在 $a$ 在 $F$ 上的最小多项式。只需要考虑$f(x)=a_0f_1(x)\cdots f_n(x)$. $a$ 是 $f(x)$ 的根的充要条件是 $a$ 是某个 $f_i(x)$ 的根。

46

Threads

323

Posts

2834

Credits

Credits
2834

Show all posts

 Author| 业余的业余 Posted 2023-11-5 01:25
Last edited by 业余的业余 2023-11-7 21:33重新利用此楼。以下内容引自9楼所列电子书第520页。个人觉得对证明 $b$ 有必要

Proposition 9. Let $\alpha$ be algebraic over $F$. Then there is a unique monic irreducible polynomial $m_{\alpha,F}(x)\in F[x]$ which has $\alpha$ at a root. A polynomial $f(x)\in F[x]$ has $\alpha$ as a root if and only if $m_{\alpha,F}(x)$ divides $f(x)$ in $F[x]$.

Proof: Let $g(x)\in F[x]$ be a monic polynomial of minimal degree having $\alpha$ as a root. Suppose $g(x)$ were reducible in $F[x]$, say $g(x)=a(x)b(x)$ with $a(x),b(x)\in F[x]$ both of degree smaller than $\deg(g)$. Then $g(\alpha)=a(\alpha)b(\alpha)$ in $K$, and since $K$ is a field,either $a(\alpha)=0$ or $b(\alpha)=0$, contradicting the minimality of the degree of $g(x)$. It follows that $g(x)$ is a monic irreducible polynomial having $\alpha$ as root.

Suppose now that $f(x)\in F[x]$ is any polynomial having $\alpha$ as a root. By the Euclidean Algorithm in $F[x]$ there are polynomials $q(x),r(x)\in F[x]$ such that\[ f(x)=q(x)g(x)+r(x) \qquad \text{with }\deg(r)=\deg(g).\]
Then $f(\alpha)=q(\alpha)g(\alpha)+r(\alpha)$ in $K$ and since $\alpha$ is a root of both $f(x)$ and $g(x)$, we obtain $r(\alpha)=0$, which contradicts the minimality of $g(x)$ unless $r(x)=0$. Hence $g(x)$ divides any polynomial $f(x)$ in $F[x]$ having $\alpha$ as a root...$\box$

46

Threads

323

Posts

2834

Credits

Credits
2834

Show all posts

 Author| 业余的业余 Posted 2023-11-5 01:54
Last edited by hbghlyj 2023-11-5 14:53

field extension 1

field extension 1

46

Threads

323

Posts

2834

Credits

Credits
2834

Show all posts

 Author| 业余的业余 Posted 2023-11-5 22:15
Last edited by 业余的业余 2023-11-20 02:01伽罗华理论

第 88 页有这个问题的一个完整证明。

Mobile version|Discuz Math Forum

2025-6-5 07:58 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit