找回密码
 快速注册
搜索
查看: 471|回复: 65

[数论] 伽罗华理论相关三题

[复制链接]

48

主题

361

回帖

3034

积分

积分
3034

显示全部楼层

业余的业余 发表于 2023-11-7 00:59 |阅读模式
本帖最后由 业余的业余 于 2023-11-7 01:22 编辑 极度凶残
这题也有关联。


3. Let $F$ be a field. An irreducible polynomial $f(x)\in F[x]$ is said to be separable if it has no repeated root in any field extension $E$ of $F$.
  • Prove that an irreducible polynomial $f(x)$ is separable if and only if $f'(x)\neq 0$.

    hint: Suppose $\alpha\in E$ is a repeated root of $f(x)$. Can you find a common factor of $f(x)$ and $f'(x)$ in $E[x]$? Can you find a common factor of $f(x)$ and $f'(x)$ in $F[x]$?
  • Prove that if $F$ is a finite field or if $F$ has characteristic $0$, then every irreducible polynomial is separable. Such a field is said to be perfect.

    hint: Every element in a finite field of characteristic $p$ is a $p$-th power.
  • Suppose $F = \Bbb F_p(t)$ is the field of rational functions in $t$. Let $E = F[x]/(x^p - t).$ Prove that $x^p - t$ is irreducible in $F[x]$ and that $\text{Aut}_F(E)$ consists of only the identity map.


A finite extension where the minimal polynomial of any element is separable is a separable extension. Part (c) gives a reason for this name: it is where the automorphisms can separate elements of $E$.


4.  Let $\varphi:F_1\rightarrow F_2$ be an isomorphism of fields and denote also by $\varphi$ its natural extension to a ring isomorphism $F_1[x]\rightarrow F_2[x]$. Let $f_1(x)\in F_1[x]$ be irreducible and let $f_2(x) = \varphi(f_1(x)).$ Let $E_1$ be a splitting field of $f_1(x)$ over $F_1$ and let $E_2$ be a splitting field of $f_2(x)$ over $F_2$. Prove that $\varphi$ extends to a field isomorphism $\psi:E_1\rightarrow E_2$. (Here “extends” means that for any $\alpha\in F_1$, we have $\psi(\alpha) = \varphi(\alpha)$.)

hint Keep calm and induct on the degree of $f_1(x)$. Let $\alpha\in E_1$ be a root of $f_1(x)$. Let $\beta\in E_2$ be a root of $f_2(x)$. Extend $\varphi$ first to an isomorphism $\varphi_1:F_1[\alpha]\rightarrow F_2[\beta].$ Can you find a polynomial $g_1(x)\in F_1[\alpha][x]$ of degree less than $\deg(f)$ such that $E_1$ is a splitting field of $g_1(x)$ over $F_1[\alpha]$?

If we take $F_2 = F_1$ and $\varphi$ to be the identity map, then this proves that any two splitting fields of $f(x)$ are isomorphic via an isomorphism that fixes $F_1$. As a result, we usually speak of “the” splitting field of $f(x)$. This gives another proof that any two fields of order $p^n$ are isomorphic as they are both splitting fields of $x^{p^n} - x$ over $\Bbb F_p$.

5. Let $F$ be a field and let $E$ be a finite extension of $F$. We say the extension $E/F$ is normal if $E$ is a splitting field of some $f(x)\in F[x]$. Prove that if $g(x)\in F[x]$ is irreducible and has a root in a normal extension $E/F$, then $g(x)$ splits completely in $E$.

hint Let $\alpha$ be a root of $g(x)$ in $E$ and let $\beta$ be any root of $g(x)$ in a splitting field $E'$ of $g(x)$. Write down an isomorphism $F[\alpha]\rightarrow F[\beta]$ fixing $F$ and extend this to an isomorphism $E[\alpha]\rightarrow E[\beta]$ using Problem 4. Use to conclude $[E[\alpha]:F] = [E[\beta]:F].$





    A note on Galois theory


We can be more precise in Problem 4 to prove by induction that there are $[E_1:F_1]$ possible choices for $\psi:E_1\rightarrow E_2$ if $f_1(x)$ is separable. Indeed, following the given hint, after extending $\varphi$ to $\varphi_1:F_1[\alpha]\rightarrow F_2[\beta]$, there are then $[E_1:F_1[\alpha]]$ ways to extend it to $E_1$ by induction. Extending $\varphi$ to $\varphi_1$ on $F_1[\alpha]$ amounts to finding a root $\beta$ of $f_2$, and there are $\deg(f_2)=\deg(f_1)$ of them since $f_1$ and so $f_2$ are separable. Hence the total number of extensions is
$$\deg(f_1)\cdot[E_1:F_1[\alpha]] = [F_1[\alpha]:F_1]\cdot[E_1:F_1[\alpha]] = [E_1:F_1].$$

We say an arbitrary polynomial (not necessarily irreducible) in $F[x]$ is separable if all of its irreducible factors are separable. Problem 4 and the above counting argument can be generalized to all separable polynomials, by starting the induction with some irreducible factor of $f_1(x)$.
If we apply these result to the identity map, we obtain:

Theorem 1.
    Let $F$ be a field and let $f(x)\in F[x]$ be a separable polynomial. Let $E$ be a splitting field of $f(x)$ over $F$. Then $|\text{Aut}_F(E)| = [E:F].$

We say a finite extension $E/F$ is Galois if it is a splitting field of a separable polynomial $f(x)\in F[x]$. Note that if $L$ is a subfield of $E$ containing $F$, then $E$ is also a splitting field of $f(x)$ over $L$ and $f(x)$ is separable over $L$. So $E/L$ is also Galois. The extension $L/F$ is not necessarily Galois. The automorphism group $\text{Aut}_F(E)$ is called the Galois group, denoted $\text{Gal}(E/F)$. For any subgroup $H$ of $\text{Gal}(E/F)$, recall the fixed field
$$E^H = \{\alpha\in E\colon \sigma(\alpha) = \alpha,\forall \sigma\in H\}.$$

Theorem 2.
    Let $F$ be a field and let $f(x)\in F[x]$ be a separable polynomial. Let $E$ be a splitting field of $f(x)$ over $F$. Let $G = \text{Gal}(E/F)$. Then $E^G = F$. In particular, for any intermediate field $F\subseteq L\subseteq E$, we have $$E^{\text{Gal}(E/L)} = L.$$

Proof: The key observation is that since every $\sigma\in G$ fixes $E^G$, we have $G \subseteq \text{Gal}(E/E^G).$ Since by definition $F\subseteq E^G$ and $E/E^G$ is Galois, we have by Theorem 1,
$$[E:F] = |G| \leq |\text{Gal}(E/E^G)| = [E:E^G] \leq [E:F].$$
So everything is equal and we have $F = E^G$. $\Box$

The other equality where we start with a subgroup of the Galois group needs a bit of linear algebra.

Theorem 3.
Let $F$ be a field and let $f(x)\in F[x]$ be a separable polynomial. Let $E$ be a splitting field of $f(x)$ over $F$. Let $H$ be a subgroup of $\text{Gal}(E/F)$. Then$$H = \text{Gal}(E/E^H).$$

Proof: Since we have $H \subseteq \text{Gal}(E/E^H)$ by definition, we have
$$|H| \leq |\text{Gal}(E/E^H)| = [E:E^H].$$
Suppose for a contradiction that $[E:E^H] > |H| =: n$. Let $\beta_1,\ldots,\beta_{n+1}\in E$ be linearly independent over $E^H$. Consider the following system of $n$ linear equations in $n+1$ unknowns in $E$:
$$\sigma(\beta_1)x_1 + \cdots + \sigma(\beta_{n+1})x_{n+1} = 0,\qquad \sigma\in H.$$
Since nonzero solutions $(x_1,\ldots,x_{n+1})\in E^{n+1}$ exist, we take one with the smallest number of nonzero entries. Without loss of generality, suppose $x_1,\ldots,x_r\in E$ are nonzero and $x_{r+1} = \cdots = x_{n+1} = 0$. Since $\sigma(\beta_1)\neq 0$, we see that $r\geq 2$. We now construct a solution with fewer nonzero entries, contradicting minimality of $r$. By scaling, we may assume $x_r = 1$. By taking $\sigma = 1$, we get $\beta_1x_1 + \cdots + \beta_rx_r = 0$. Since $\beta_1,\ldots,\beta_r$ are linearly independent over $E^H$, we see that not all $x_1,\ldots,x_r$ are in $E^H$. Without loss of generality, assume $x_1\notin E^H$. Let $\varphi\in H$ such that $\varphi(x_1)\neq x_1$. Then we have
$$\varphi\sigma(\beta_1)\varphi(x_1) + \cdots + \varphi\sigma(\beta_r)\varphi(x_r) = 0,\qquad \sigma\in H.$$
Since $\varphi\sigma$ takes all elements in $H$ as $\sigma$ varies in $H$, we have
$$\sigma(\beta_1)\varphi(x_1) + \cdots + \sigma(\beta_r)\varphi(x_r) = 0,\qquad \sigma\in H.$$
Hence $(\varphi(x_1)-x_1,\ldots,\varphi(x_r) - x_r,0,\ldots,0)$ is a solution. It is nonzero because $\varphi(x_1)\neq x_1$. It has fewer nonzero entries because $x_r = 1$ and so $\varphi(x_r) - x_r = 0.$ $\Box$

We have now proved the fundamental correspondence theorem of Galois theory:

Theorem 4.
Let $E/F$ be a finite Galois extension. Then there is a bijection:
    \begin{eqnarray*}
    \{\text{Subgroups of }\text{Gal}(E/F)\}&\longleftrightarrow&\{\text{Intermediate fields of }E/F\}\\
    H&\longmapsto& E^H\\
    \text{Gal}(E/L)&\longleftarrow{\raise{.4pt}{\hspace{-5pt}\shortmid}}& L.
\end{eqnarray*}
The above two maps are inverses of each other.

评分

参与人数 1威望 +2 收起 理由
hbghlyj + 2 很有用!对Galois theory的高度浓缩和提炼

查看全部评分

3149

主题

8386

回帖

6万

积分

$\style{scale:11;fill:#eff}꩜$

积分
65391
QQ

显示全部楼层

hbghlyj 发表于 2023-11-7 01:50

3a

业余的业余 发表于 2023-11-6 17:59
Prove that an irreducible polynomial $f(x)$ is separable if and only if $f'(x)\neq 0$.

hint: Suppose $\alpha\in E$ is a repeated root of $f(x)$. Can you find a common factor of $f(x)$ and $f'(x)$ in $E[x]$? Can you find a common factor of $f(x)$ and $f'(x)$ in $F[x]$?


$(x-\alpha)^2\mid f(x)$,故$x-\alpha\in E[x]$是$f(x)$和$f'(x)$的公因式.
$\gcd(f,f')\mid f$,因$f(x)$不可约,则$\gcd(f,f')=1或f$.
若$f'\neq 0$,不可能$f\mid f'$,故$\gcd(f,f')=1$.

点评

这里面有一些notation abuse. 有时候行文时 $f(x)\ne 0$ 表示 $f(x)$ 不是常数函数 $0$. 这里的 $f'(x)\ne 0$ 是否指不存在 $a\in E/F$ 满足 $f'(a)=0$?  发表于 2023-11-7 20:38
有这样一个命题:Let $R$ be an integral domain. Let $f(x)\in R[x]$ and let $c\in R$. Then $c$ is a repeated root of $f(x)$ if and only if $f(c)=f'(c)=0.$

这个命题这里可直接用吗?  发表于 2023-11-7 20:48
补充说明一下,前面说 "notation abuse" 是说原文。很遗憾,即使在数学里面,很多符号的意义还得靠猜,靠具体的上下文推测。  发表于 2023-11-8 00:49
好吧,这里并没有 notation abuse. 教授在行文中 $f(x)=0$ 严格地表示 $f(x)$ identically $0$.  发表于 2023-11-8 22:45

评分

参与人数 1威望 +2 收起 理由
业余的业余 + 2 赞一个!

查看全部评分

3149

主题

8386

回帖

6万

积分

$\style{scale:11;fill:#eff}꩜$

积分
65391
QQ

显示全部楼层

hbghlyj 发表于 2023-11-7 01:59

3b

业余的业余 发表于 2023-11-6 17:59
Prove that if $F$ is a finite field or if $F$ has characteristic $0$, then every irreducible polynomial is separable. Such a field is said to be perfect.

hint: Every element in a finite field of characteristic $p$ is a $p$-th power.

A field of characteristic zero is perfect
证明:$f$的首项系数$a_n$不为0,$f'$的首项系数等于$na_n$也不为0,则$f'\ne0$.

Every finite field is perfect
引理:Let $F$ be a finite field of characteristic $p$. Then every element of $F$ has a $p$-th root in $F$.
证明:Consider the mapping $\phi$ from $F$ to $F$ defined by $\phi(x)=x^p$ for all $x \in F$. We claim that $\phi$ is a field automorphism. Obviously, $\phi(a b)=(a b)^p=a^p b^p=$ $\phi(a) \phi(b)$. Moreover$$\phi(a+b)=(a+b)^p=a^p+\left(\begin{array}{l}p \\ 1\end{array}\right) a^{p-1} b+\left(\begin{array}{l}p \\ 2\end{array}\right) a^{p-2} b^2+\cdots+\left(\begin{array}{c}p \\ p-1\end{array}\right) a b^{p-1}+b^p=a^p+b^p$$since each $\left(\begin{array}{l}p \\ i\end{array}\right)$ is divisible by $p$. Finally, since $x^p \neq 0$ when $x \neq 0$, $\ker \phi=\{0\}$. Thus, $\phi$ is one-to-one and, since $F$ is finite, $\phi$ is onto. This proves that $F^p=F$.

设$\operatorname{char}F=p$,若$f(x)\in F[x],f'(x)=0$,则(任何不为$p$倍数次项都为0)$$f(x)=\sum_k a_{pk}x^{pk}$$由引理$a_{pk}$有$p$次方根$\root p\of{a_{pk}}\in F$,则$$f(x)=(\sum_k\root p\of{a_{pk}}x^k)^p$$因此$f$可约。

点评

突破了名词障碍后,3(b)或许比3(a)更容易理解。现在真懂你的证明了  发表于 2023-11-8 06:34

评分

参与人数 1威望 +2 收起 理由
业余的业余 + 2 很有用!感谢!慢慢消化中。

查看全部评分

3149

主题

8386

回帖

6万

积分

$\style{scale:11;fill:#eff}꩜$

积分
65391
QQ

显示全部楼层

hbghlyj 发表于 2023-11-7 02:04

3c前半句

本帖最后由 hbghlyj 于 2023-11-8 14:36 编辑
业余的业余 发表于 2023-11-6 17:59
Suppose $F = \Bbb F_p(t)$ is the field of rational functions in $t$. Prove that $x^p - t$ is irreducible in $F[x]$.


方法1、
$𝔽_p(t)$ is the field of fractions of $𝔽_p[t]$.
By Gauss’ Lemma, $x^p-t$ is irreducible in $𝔽_p(t)[x]$ if it is irreducible in $𝔽_p[t][x]$, then apply Eisenstein’s criterion: $t∣(-t)$, $t^2\nmid(-t)$, so $x^p-t$ is irreducible in $𝔽_p[t][x]$.

To prove $t$ is prime in $𝔽_p[t]$, if $f,g∈𝔽_p[t]$ such that $t∣f(t)g(t)$, plug in $t=0$, $f(0)g(0)=0$, so $f(0)=0$ or $g(0)=0$, so one of $f(t)$ and $g(t)$ is divisible by $t$.

方法2、
Let $K$ be a field extension of $F$ containing a root $α$ of $f\coloneqq x^p-t$, then\[f=(x-α)^p\]
If $f(x)=a(x)b(x)$ for some $a(x),b(x)\in F[x]$, we consider this factorisation over $K$ and then as $K[x]$ is a UFD,$$a(x)=(x-α)^i\text{ for some }0< i< p.$$Now the coefficient of $x^{i-1}$ in this is $-iα$. So $α$ is in $F=𝔽_p(t)$ (as $i$ is invertible in $F$). So$$α=\frac{g(t)}{h(t)}\text{ for some }g,h\in\Bbb F_p[t]$$Taking $p$th powers, since $α^p=t$
$$t=\frac{g(t)^p}{h(t)^p}$$Comparing the degree in $t$
$$1=p(\deg h-\deg g)$$contradiction.

评分

参与人数 1威望 +2 收起 理由
业余的业余 + 2 厉害厉害,这总是你写的吧!

查看全部评分

3149

主题

8386

回帖

6万

积分

$\style{scale:11;fill:#eff}꩜$

积分
65391
QQ

显示全部楼层

hbghlyj 发表于 2023-11-7 02:36

3c后半句

业余的业余 发表于 2023-11-6 17:59
Suppose $F = \Bbb F_p(t)$ is the field of rational functions in $t$. Let $E = F[x]/(x^p - t).$ Prove that $\text{Aut}_F(E)$ consists of only the identity map.


设$\alpha\in E,\alpha^p=t$,则$x^p-t=(x-\alpha)^p$.
对任意$φ\in\text{Aut}_F(E)$,$φ(\alpha)^p=φ(\alpha^p)=φ(t)=t$,故$φ(\alpha)=\alpha$,即$φ=\text{id}_E$.

点评

这个我还需要更多的阅读来理解。目前甚至问不出问题 :(  发表于 2023-11-8 23:48

3149

主题

8386

回帖

6万

积分

$\style{scale:11;fill:#eff}꩜$

积分
65391
QQ

显示全部楼层

hbghlyj 发表于 2023-11-7 03:16

4归纳步 单根

本帖最后由 hbghlyj 于 2023-11-9 00:24 编辑
业余的业余 发表于 2023-11-6 17:59
hint Keep calm and induct on the degree of $f_1(x)$. Let $\alpha\in E_1$ be a root of $f_1(x)$. Let $\beta\in E_2$ be a root of $f_2(x)$. Extend $\varphi$ first to an isomorphism $\varphi_1:F_1[\alpha]\rightarrow F_2[\beta].$

因为$f_1(x)\in F_1[x]$不可约,$F_1\cong F_2$,所以$f_2(x)=\varphi(f_1(x))$不可约.
$\varphi(⟨f_1(x)⟩)=⟨f_2(x)⟩$,因此$\varphi:F_1[x]→F_2[x]$ descends to $\bar\varphi:F_1[x]/⟨f_1(x)⟩→F_2[x]/⟨f_2(x)⟩$
$\theta_1:F_1[\alpha]→F_1[x]/⟨f_1(x)⟩$
$\theta_2:F_2[\beta]→F_2[x]/⟨f_2(x)⟩$
则$\theta_2^{-1}\circ\bar\varphi\circ\theta_1:F_1[\alpha]→F_2[\beta]$是所需的同构$\varphi_1$.

点评

看了三次,居然有一点明白的感觉了。意外。  发表于 2023-11-9 08:12

3149

主题

8386

回帖

6万

积分

$\style{scale:11;fill:#eff}꩜$

积分
65391
QQ

显示全部楼层

hbghlyj 发表于 2023-11-7 03:25

4归纳步

业余的业余 发表于 2023-11-6 17:59
Can you find a polynomial $g_1(x)\in F_1[\alpha][x]$ of degree less than $\deg(f)$ such that $E_1$ is a splitting field of $g_1(x)$ over $F_1[\alpha]$?


$g_1(x)=\frac{f(x)}{x-\alpha}\in F_1[\alpha][x]$
$\deg g_1=\deg f-1<\deg f$

3149

主题

8386

回帖

6万

积分

$\style{scale:11;fill:#eff}꩜$

积分
65391
QQ

显示全部楼层

hbghlyj 发表于 2023-11-7 03:51

5

业余的业余 发表于 2023-11-6 17:59
hint Let $α$ be a root of $g(x)$ in $E$ and let $β$ be any root of $g(x)$ in a splitting field $E'$ of $g(x)$. Write down an isomorphism $F[α]→ F[β]$ fixing $F$ and extend this to an isomorphism $E[α]→ E[β]$ using Problem 4. Use to conclude $[E[α]:F] = [E[β]:F].$
为证明$g(x)$在$E$分裂,即$E=E'$,只需证明对每个$β$都有$β∈ E$. 用Xy-pic画图帮助理解:
\[\xymatrix{
    E\ar[rr]&&E(β)\\
    F(α)\ar[u ]\ar[rr]&&F(β)\ar[u ]\\
    &F\ar[ul]\ar[ur]
}\]
hint证明了$[E[α]:F] = [E[β]:F].$
而 $α\in E$, 上式中 $E=E[α]$, 即 $[E : F]=[E(β) : F]$.
而 $E ⊆ E(β)$, 因此 $E = E(β)$, 即 $β∈ E$.

48

主题

361

回帖

3034

积分

积分
3034

显示全部楼层

 楼主| 业余的业余 发表于 2023-11-7 05:59 来自手机
一百万个感谢!很有帮助,我的目标是得一半的分。这套题难倒了很多基础特别好的童鞋,老兄够强!

3149

主题

8386

回帖

6万

积分

$\style{scale:11;fill:#eff}꩜$

积分
65391
QQ

显示全部楼层

hbghlyj 发表于 2023-11-7 07:44
业余的业余 发表于 2023-11-6 17:59
Use to conclude $[E[\alpha]:F] = [E[\beta]:F].$


这句话 Use 和 to 之间有脱漏?

3149

主题

8386

回帖

6万

积分

$\style{scale:11;fill:#eff}꩜$

积分
65391
QQ

显示全部楼层

hbghlyj 发表于 2023-11-7 07:50
业余的业余 发表于 2023-11-6 17:59
This gives another proof that any two fields of order $p^n$ are isomorphic as they are both splitting fields of $x^{p^n} - x$ over $\Bbb F_p$.


这个是another proof,那第一种proof是什么呢

48

主题

361

回帖

3034

积分

积分
3034

显示全部楼层

 楼主| 业余的业余 发表于 2023-11-7 11:40
hbghlyj 发表于 2023-11-7 07:44
这句话 Use 和 to 之间有脱漏?

对,应该是漏了宾语。我想他想说的应该是

Use it (the isomorphism $E[\alpha]\to E[\beta]$ mentioned in the sentence preceding it) to conclude ...

48

主题

361

回帖

3034

积分

积分
3034

显示全部楼层

 楼主| 业余的业余 发表于 2023-11-7 11:57
hbghlyj 发表于 2023-11-7 07:50
这个是another proof,那第一种proof是什么呢


abc.png

从 推论 10.3 和 推论 10.6 可得 $\Bbb F_{p^n}$ unique up to isomorphism.


赶时间,做了个图片。等闲下来再改成文字的节省空间。

3149

主题

8386

回帖

6万

积分

$\style{scale:11;fill:#eff}꩜$

积分
65391
QQ

显示全部楼层

hbghlyj 发表于 2023-11-7 20:31
业余的业余 发表于 2023-11-6 21:59
这套题难倒了很多基础特别好的童鞋,老兄够强!

其实我发的证明都是书上/网上抄来的
(链接中separable extension、normal extension的定义与这里不同,我调整了一下避免循环论证

点评

我主贴中链接的帖子中有一本电子书,那里面应该啥都有,不过要在短时间消化那么多材料,对于我这看了后头忘了前头的脑袋,是难以逾越的挑战  发表于 2023-11-7 20:59
不管是你谦虚,还是善于查找资料,对我的帮助都是无比巨大的。再谢!  发表于 2023-11-7 22:35

48

主题

361

回帖

3034

积分

积分
3034

显示全部楼层

 楼主| 业余的业余 发表于 2023-11-7 21:18
3(a) 直接这样套书上的证明怎么样呢?

两个方向,我们都假设 $c$ 是 $f(x)$ 一个根. 那么 $f(x)=(x-c)g(x)$, 其中 $g(x)\in E[x]$. 两边求导有 $f'(x)=g(x)+(x-c)g'(x)$. 故 $f'(c)=g(c)$. 故当且仅当 $f'(c)=0$ 时,$g(x)$ 有因式 $x-c$.

点评

好的  发表于 2023-11-7 22:05

3149

主题

8386

回帖

6万

积分

$\style{scale:11;fill:#eff}꩜$

积分
65391
QQ

显示全部楼层

hbghlyj 发表于 2023-11-7 21:59
业余的业余 点评于 2023-11-7 12:38
这里的 $f'(x)\ne 0$ 是否指不存在 $a\in E/F$ 满足 $f'(a)=0$?


题3a中的 $f'(x)\ne 0$ 是指 $f'$恒等于$0$.
例如题3c中$f(x)=x^p-t$,则$f'(x)=px^{p-1}$恒等于$0$.(因为在$F$上$p=0$)。

48

主题

361

回帖

3034

积分

积分
3034

显示全部楼层

 楼主| 业余的业余 发表于 2023-11-7 22:34
hbghlyj 发表于 2023-11-7 21:59
题3a中的 $f'(x)\ne 0$ 是指 $f'$恒等于$0$.
例如题3c中$f(x)=x^p-t$,则$f'(x)=px^{p-1}$恒等于$0$.(因 ...

存疑。我们构造一个例子。

令 $f(x)=(x-1)^2(x+1)\in \Bbb Z[x]$, 即 $f(x)=x^3-x^2-x+1$, 从而 $f'(x)=3x^2-2x-1$ 不是 identically $0$ 但有重根。

点评

题3的条件中有$f(x)$ is irreducible,这个例子不是irreducible  发表于 2023-11-7 23:35
对,我的例子不成立。但是 $f'(x)$ identically $0$ 意味着 $f(x)=c$, 这是不是有点说不通?  发表于 2023-11-7 23:43
参 19 楼的新反例。  发表于 2023-11-7 23:59

48

主题

361

回帖

3034

积分

积分
3034

显示全部楼层

 楼主| 业余的业余 发表于 2023-11-7 23:26
本帖最后由 业余的业余 于 2023-11-7 23:58 编辑 证 $3.a$ 我还是有困难。

如果说是证
如果存在 $c\in E$ 满足 $f(c)=f'(c)=0$, 那么 $c$ 是 重根,从而 $f(x)$ 不是separable的;

如果不存在 $f(x)$ 的根 $c$ 使 $f’(c)=0$, 那么 $c$ 不是重根。因为$c$ 的任意性,从而 $f(x)$ 是 separable的。

那这是显然的。

但是对任意的 $c\in E/F$, 如果 $f'(c)=0$ 那么 $c$ 是重根这个好像不充分吧?

我们令 $f(x)=\sum_{k=0}^n a_kx^k$, 那么 $f'(x)=\sum_{k=1}^n ka_kx^{k-1}$。调整$a_i$ 使得  $f'(c)=\sum_{k=1}^n ka_kc^{k-1}=0$. 但是 $f(x)$ 的 $a_0$(常数项)是不受约束的,怎么能保证 $f(c)=0$ 呢? 又如何推导出有某个与 $c$ 关联的 $b\in E$ 满足 $f(b)=f'(b)=0$ 呢?

48

主题

361

回帖

3034

积分

积分
3034

显示全部楼层

 楼主| 业余的业余 发表于 2023-11-7 23:51
hbghlyj 发表于 2023-11-7 21:59
题3a中的 $f'(x)\ne 0$ 是指 $f'$恒等于$0$.
例如题3c中$f(x)=x^p-t$,则$f'(x)=px^{p-1}$恒等于$0$.(因 ...


或者我们考虑这个多项式 $f(x)=x^2-2\in\Bbb Q[x]$, 它在 $\Bbb Q[x]$中不可约,在 $\Bbb Q$ 的所有域扩展中无重根, 因此 $f(x)$ 是 separable的,但显然 $f'(x)=2x$ 不是 identically 0的。

3.a 还是所有剩下的题目中我勉强能看懂的,何其凶残乃尔!

3149

主题

8386

回帖

6万

积分

$\style{scale:11;fill:#eff}꩜$

积分
65391
QQ

显示全部楼层

hbghlyj 发表于 2023-11-8 00:03
业余的业余 发表于 2023-11-7 15:51
或者我们考虑这个多项式 $f(x)=x^2-2\in\Bbb Q[x]$, 它在 $\Bbb Q[x]$中不可约,在 $\Bbb Q$ 的所有域扩 ...


“$f'(x)=2x$ 不是 identically 0的” 不违反 题3a 啊
题3a是说“不可约$f$在扩域中有重根则$f'$ identically 0”
$f(x)=x^2-2$在扩域中无重根 且$f'$ 不identically 0

点评

是的,现在回头看就明白了。之前钻进牛角尖了。题目把特征为0的域凑进来增加了理解难度。  发表于 2023-11-8 06:19

手机版|悠闲数学娱乐论坛(第3版)

GMT+8, 2025-3-4 12:35

Powered by Discuz!

× 快速回复 返回顶部 返回列表