Forgot password?
 Create new account
View 83|Reply 1

[数论] 棱柱图和反棱柱图的色多项式的可约性

[Copy link]

1

Threads

18

Posts

334

Credits

Credits
334
QQ

Show all posts

ZCos666 Posted at 2025-4-7 20:00:14 |Read mode
棱柱图(Prism Graph)的色多项式为

\[P_n(k)=(k-1)\left[(1-k)^n+(3-k)^n\right]+(k^2-3k+3)^n+k^2-3k+1\]

不难发现,恒有因式$k(k-1)$,当$n\nmid2$时,还有因式$k-2$,于是令

\[f_n(k)=\begin{cases} \dfrac{1}{k(k-1)(k-2)}P_n(k)&n\nmid2\\[5pt] \dfrac{1}{k(k-1)}P_n(k)&n\mid2 \end{cases}\]

试证明或证伪:$n\ge2$时,$f_n(k)$在$\mathbb{Q}[k]$上不可约

反棱柱图(Antiprism Graph)的色多项式为

\[P_n(k)=(k-1)\left[\left(\frac{5-2 k-\sqrt{9-4 k}}{2}\right)^{n}+\left(\frac{5-2 k+\sqrt{9-4 k}}{2}\right)^{n}\right]+(k-2)^{2 n}+k^{2}-3 k+1\]

不难发现,恒有因式$k(k-1)(k-2)$,当$n\nmid3$时,还有因式$k-3$,于是令

\[f_n(k)=\begin{cases} \dfrac{1}{k(k-1)(k-2)(k-3)}P_n(k)&n\nmid3\\[5pt] \dfrac{1}{k(k-1)(k-2)}P_n(k)&n\mid3 \end{cases}\]

试证明或证伪:$f_n(k)$在$\mathbb{Q}[k]$上不可约

3147

Threads

8493

Posts

610K

Credits

Credits
66163
QQ

Show all posts

hbghlyj Posted at 2025-4-7 22:22:46
相关:Galois groups of chromatic polynomials
cameroncounts.wordpress.com/2016/10/04/algebr … -of-chromatic-roots/
…graphs for which the chromatic polynomial is a product of a number of linear factors together with one “interesting” factor. Computation shows that this interesting factor is very often irreducible

手机版Mobile version|Leisure Math Forum

2025-4-20 22:26 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list