Forgot password?
 Create new account
View 153|Reply 2

[数论] 每个不可约多项式都能用Eisenstein判定吗?

[Copy link]

3151

Threads

8498

Posts

610K

Credits

Credits
66208
QQ

Show all posts

hbghlyj Posted at 2023-10-9 19:36:47 |Read mode
Last edited by hbghlyj at 2024-4-23 13:06:00Irreducibility check for polynomials not satisfying Eisenstein Criterion.
Is there an irreducible polynomial which cannot be judged by Eisenstein criterion

guests.mpim-bonn.mpg.de/spc/teaching/algebra2 … ein_discriminant.pdf
Proposition. If Eisenstein works for the polynomial $f(x)=a_n x^n+\cdots+a_1 x+a_0 \in$ $\mathbb{Z}[x]$, with the prime $p$, then $p \mid \Delta(f)$.

Proof. Since Eisenstein works, we have that $p \mid a_i$, for $0 \leq i \leq n-1$, and $p \nmid a_n$. Reducing modulo $p$ gives that
\[
\bar{f}(x)=\overline{a_n} x^n \quad \text { in } \mathbb{Z} / p[x] .
\]
Therefore $\bar{f}$ has a repeated root $x=\overline{0}$, modulo $p$. So we find, $\overline{\Delta(f)}=\Delta(\bar{f})=0$, in $\mathbb{Z} / p$. This means $\Delta(f)$ is divisible by $p$, as claimed.

3151

Threads

8498

Posts

610K

Credits

Credits
66208
QQ

Show all posts

 Author| hbghlyj Posted at 2023-11-1 05:13:11
致各位论坛网友:

由于 hbghlyj 操作数据库失误导致由 2023-9-26 至 2023-11-5 间期的所有帖子的内文都被清空,在此给大家真诚道歉。

现在我们正在浏览这期间的帖子,努力回忆内容,尽可能地多恢复一些,如果您还记得本帖原本的内容,也希望您能编辑回来,麻烦各位了。

3151

Threads

8498

Posts

610K

Credits

Credits
66208
QQ

Show all posts

 Author| hbghlyj Posted at 2023-11-1 06:37:32
致各位论坛网友:

由于 hbghlyj 操作数据库失误导致由 2023-9-26 至 2023-11-5 间期的所有帖子的内文都被清空,在此给大家真诚道歉。

现在我们正在浏览这期间的帖子,努力回忆内容,尽可能地多恢复一些,如果您还记得本帖原本的内容,也希望您能编辑回来,麻烦各位了。

手机版Mobile version|Leisure Math Forum

2025-4-21 14:35 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list