Forgot password?
 Create new account
View 102|Reply 1

[数论] $\phi$函数的不等式

[Copy link]

3147

Threads

8497

Posts

610K

Credits

Credits
66183
QQ

Show all posts

hbghlyj Posted at 2024-11-7 00:56:42 |Read mode
根据此帖子 $\frac{\phi(p^n - 1)}{n}$ 是本原多项式的个数,而 $\frac{1}{n} \sum_{d \mid n} \mu\left(\frac{n}{d}\right) p^d$ 是不可约多项式的个数,本原多项式包含于不可约多项式,因此 $\frac{\phi(p^n - 1)}{n}\leqslant\frac{1}{n} \sum_{d \mid n} \mu\left(\frac{n}{d}\right) p^d$. 请问:有没有直接证明这个不等式的办法?即:
$p$为素数,$n$为正整数,求证$$\phi(p^n - 1)\leqslant\sum_{d \mid n} \mu\left(\frac{n}{d}\right) p^d$$

3147

Threads

8497

Posts

610K

Credits

Credits
66183
QQ

Show all posts

 Author| hbghlyj Posted at 2024-11-7 00:58:18
使用$\varphi\left(n\right)=\sum_{d|n}d\cdot\mu\left(\frac{n}{d}\right)$, 将不等式写为:
\[\sum_{d|p^n-1}d\cdot\mu\left(\frac{p^n-1}{d}\right)\leqslant\sum_{d \mid n} \mu\left(\frac{n}{d}\right) p^d\]
怎么证明?

手机版Mobile version|Leisure Math Forum

2025-4-21 01:24 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list