Forgot password?
 Create new account
View 132|Reply 1

[几何] 有关四面体内心的行列式

[Copy link]

83

Threads

51

Posts

763

Credits

Credits
763

Show all posts

lihpb Posted at 2024-1-13 20:29:10 |Read mode
Last edited by hbghlyj at 2025-3-8 20:03:32四面体 $A_1 A_2 A_3 A_4$ 的内心为 $I$,$A_i I$ 与 $A_i$ 所对底面交于 $B_i,(i=1,2,3,4)$,则\[
\begin{vmatrix}
-A_1 I & I B_1 & I B_1 & I B_1 \\
I B_2 & -A_2 I & I B_2 & I B_2 \\
I B_3 & I B_3 & -A_3 I & I B_3 \\
I B_4 & I B_4 & I B_4 & -A_4 I
\end{vmatrix}=0
\]

700

Threads

110K

Posts

910K

Credits

Credits
94197
QQ

Show all posts

kuing Posted at 2024-1-14 01:35:36
Last edited by kuing at 2024-1-14 01:44:00不需要内心,`I` 可换成四面体内任意一点 `P`,行列式都是 `0`。

证明:令
\begin{align*}
PB_i&=\lambda_i\cdot A_iB_i,\quad(i=1,2,3,4)\\[1ex]
\riff A_iP&=(1-\lambda_i)\cdot A_iB_i,
\end{align*}
注意到 `\lambda_i` 等于 `A_i` 所对底面与 `P` 连成的三棱锥体积与原四面体体积之比(即 `\lambda_1=V(P\text-A_2A_3A_4):V(A_1A_2A_3A_4)` 等),可见 `\lambda_1+\lambda_2+\lambda_3+\lambda_4=1`,而行列式化为
\[\begin{vmatrix}
-A_1P & PB_1 & PB_1 & PB_1 \\
PB_2 & -A_2P & PB_2 & PB_2 \\
PB_3 & PB_3 & -A_3P & PB_3 \\
PB_4 & PB_4 & PB_4 & -A_4P
\end{vmatrix}
=\begin{vmatrix}
\lambda_1-1 & \lambda_1 & \lambda_1 & \lambda_1 \\
\lambda_2 & \lambda_2-1 & \lambda_2 & \lambda_2 \\
\lambda_3 & \lambda_3 & \lambda_3-1 & \lambda_3 \\
\lambda_4 & \lambda_4 & \lambda_4 & \lambda_4-1
\end{vmatrix}\cdot\prod_{i=1}^4A_iB_i,\]
用加边法,有
\begin{align*}
\begin{vmatrix}
\lambda_1-1 & \lambda_1 & \lambda_1 & \lambda_1 \\
\lambda_2 & \lambda_2-1 & \lambda_2 & \lambda_2 \\
\lambda_3 & \lambda_3 & \lambda_3-1 & \lambda_3 \\
\lambda_4 & \lambda_4 & \lambda_4 & \lambda_4-1
\end{vmatrix}
&=\begin{vmatrix}
1 & 1 & 1 & 1 & 1 \\
0 & \lambda_1-1 & \lambda_1 & \lambda_1 & \lambda_1 \\
0 & \lambda_2 & \lambda_2-1 & \lambda_2 & \lambda_2 \\
0 & \lambda_3 & \lambda_3 & \lambda_3-1 & \lambda_3 \\
0 & \lambda_4 & \lambda_4 & \lambda_4 & \lambda_4-1
\end{vmatrix}\\[1ex]
&\quad\text{第一行分别乘 $-\lambda_i$ 加到第 $i+1$ 行得}\\[1ex]
&=\begin{vmatrix}
1 & 1 & 1 & 1 & 1 \\
-\lambda_1 & -1 & 0 & 0 & 0 \\
-\lambda_2 & 0 & -1 & 0 & 0 \\
-\lambda_3 & 0 & 0 & -1 & 0 \\
-\lambda_4 & 0 & 0 & 0 & -1
\end{vmatrix}\\[1ex]
&\quad\text{将第二至五行全加到第一行得}\\[1ex]
&=\begin{vmatrix}
1-\lambda_1-\lambda_2-\lambda_3-\lambda_4 & 0 & 0 & 0 & 0 \\
-\lambda_1 & -1 & 0 & 0 & 0 \\
-\lambda_2 & 0 & -1 & 0 & 0 \\
-\lambda_3 & 0 & 0 & -1 & 0 \\
-\lambda_4 & 0 & 0 & 0 & -1
\end{vmatrix}\\
&=1-\lambda_1-\lambda_2-\lambda_3-\lambda_4\\
&=0,
\end{align*}
即得证。

手机版Mobile version|Leisure Math Forum

2025-4-21 22:27 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list