Forgot password?
 Create new account
View 280|Reply 8

行列式求导

[Copy link]

65

Threads

414

Posts

3556

Credits

Credits
3556

Show all posts

Tesla35 Posted at 2022-3-20 13:33:32 |Read mode
行列式求导.jpg
需要先求出函数再求导吗?

700

Threads

110K

Posts

910K

Credits

Credits
94172
QQ

Show all posts

kuing Posted at 2022-3-20 14:01:26
公式是将任一行改为其导数再加起来,也就是
\begin{align*}
F'(t)={}&\begin{vmatrix}
2t+2 & & & 1 \\
& 2t+1 & t & t \\
& t & 3t+1 & t \\
t & t & t & 8t+1
\end{vmatrix}\\
&+
\begin{vmatrix}
t^2+2t+2 & & & t \\
& 2 & 1 & 1 \\
& t & 3t+1 & t \\
t & t & t & 8t+1
\end{vmatrix}\\
&+
\begin{vmatrix}
t^2+2t+2 & & & t \\
& 2t+1 & t & t \\
& 1 & 3 & 1 \\
t & t & t & 8t+1
\end{vmatrix}\\
&+
\begin{vmatrix}
t^2+2t+2 & & & t \\
& 2t+1 & t & t \\
& t & 3t+1 & t \\
1 & 1 & 1 & 8
\end{vmatrix},
\end{align*}
代入 0,就是
\[
F'(0)=\begin{vmatrix}
2 & & & 1 \\
& 1 &  &  \\
&  & 1 &  \\
&  &  & 1
\end{vmatrix}+
\begin{vmatrix}
2 & & &  \\
& 2 & 1 & 1 \\
&  & 1 &  \\
&  &  & 1
\end{vmatrix}+
\begin{vmatrix}
2 & & & \\
& 1 &  &  \\
& 1 & 3 & 1 \\
&  &  & 1
\end{vmatrix}+
\begin{vmatrix}
2 & & &  \\
& 1 &  &  \\
&  & 1 &  \\
1 & 1 & 1 & 8
\end{vmatrix}
=2+4+6+16=28.
\]

65

Threads

414

Posts

3556

Credits

Credits
3556

Show all posts

 Author| Tesla35 Posted at 2022-3-20 14:11:23
回复 2# kuing

原来如此。我找一下教材

2

Threads

465

Posts

6357

Credits

Credits
6357
QQ

Show all posts

爪机专用 Posted at 2022-3-20 14:15:28
回复 3# Tesla35

那公式利用 (abc...z)'=a'bc...z+ab'c...z+...+abc...z' 及行列式定义即可证,很简单。

801

Threads

4888

Posts

310K

Credits

Credits
36170

Show all posts

isee Posted at 2022-3-20 14:17:42
回复 1# Tesla35

哈哈哈哈哈,楼主也忘记了:对行列式每一行(或列)求导,然后将这些行列式求和,就是f'(t)

801

Threads

4888

Posts

310K

Credits

Credits
36170

Show all posts

isee Posted at 2022-3-20 14:18:36
回复 2# kuing

都导完了~~~~~~~~

65

Threads

414

Posts

3556

Credits

Credits
3556

Show all posts

 Author| Tesla35 Posted at 2022-3-20 14:19:43
回复 5# isee

大学微积分还记得一些。线性代数很多都忘了

3151

Threads

8498

Posts

610K

Credits

Credits
66208
QQ

Show all posts

hbghlyj Posted at 2022-3-23 04:40:28
回复 1# Tesla35
雅可比公式(Jacobi's formula)把矩阵 $\mathbf {A}$ 的行列式的导数表达为 $\mathbf {A}$ 的伴随矩阵与 $\mathbf {A}$ 本身导数的乘积的迹。
${\displaystyle {\frac {\mathrm {d} }{\mathrm {d} t}}\det \mathbf {A} \left(t\right)=\operatorname {tr} \left(\operatorname {adj} \left(\mathbf {A} \left(t\right)\right)\,{\frac {\mathrm {d} \mathbf {A} \left(t\right)}{\mathrm {d} t}}\right)}$
bananaspace.org/wiki/Jacobi_%E5%85%AC%E5%BC%8F

3151

Threads

8498

Posts

610K

Credits

Credits
66208
QQ

Show all posts

hbghlyj Posted at 2022-3-23 04:44:15

In[1]:=
          A = {{t^2 + 2 t + 2, 0, 0, t}, {0, 2 t + 1, t, t}, {0, t, 3 t + 1, t}, {t, t, t, 8 t + 1}};
In[2]:=
          FullSimplify[Det[A] Tr[Inverse[A] . D[A, t]] == D[Det[A], t]]
Out[2]:=
          True

手机版Mobile version|Leisure Math Forum

2025-4-21 14:27 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list