|
Author |
hbghlyj
Posted 2024-3-4 03:21
因為\eqref{1}、\eqref{2}是三次曲线,所以共有$3\times3=9$个交点。
tylerzhu.com/assets/handouts/cubicflexpoints.pdf
非奇异三次曲线共有9个拐点,9个点3个一组地分布在12条直线上,其中通过每个点有4条直线。形成Hesse configuration:
(上图是想象图,因为我们无法画出复射影平面$\Bbb CP^2$.)
例如$f=\alpha\left(z_1^3+z_2^3+z_3^3\right)+6 \beta z_1 z_2 z_3$的9个拐点为
\begin{array}{lll}
(0,1,-1) & (0,1,-\omega) & \left(0,1,-\omega^2\right) \\
(-1,0,1) & (-\omega, 0,1) & \left(-\omega^2, 0,1\right) \\
(1,-1,0) & (1,-\omega, 0) & \left(1,-\omega^2, 0\right)
\end{array}12条直线为\begin{array}{lll}
z_1 = 0&z_2=0&z_3=0\\
z_1+z_2+z_3=0&\omega^2 z_1+\omega z_2+z_3=0&\omega z_1+\omega^2 z_2+z_3=0\\
\omega z_1+z_2+z_3=0&z_1+\omega z_2+z_3=0&\omega^2 z_1+\omega^2 z_2+z_3=0\\
\omega^2z_1+z_2+z_3=0&\omega z_1+\omega z_2+z_3=0&z_1+\omega^2 z_2+z_3=0
\end{array} |
|