Forgot password?
 Create new account
View 105|Reply 1

韦达定理求$-2$次方和

[Copy link]

3147

Threads

8493

Posts

610K

Credits

Credits
66163
QQ

Show all posts

hbghlyj Posted at 2024-3-26 19:56:02 |Read mode
$(\lambda_{n})_{n \in \mathbb{N}}$为$\tan(x)=x$的非零根,则$\displaystyle
\sum_{n=1}^{\infty} \frac{1}{\lambda_{n}^{2}} = \frac{1}{10}$
证明:
$\tan(x)=x\iff$
$$\sin(x)=x\cos(x)$$
在0处展开
$$x-\frac{x^3}{3!}+\frac{x^5}{5!}-\cdots=x-\frac{x^3}{2!}+\frac{x^5}{4!}-\cdots$$

$$x^3\left(\frac{1}{3!}-\frac{1}{2!}\right)-x^5\left(\frac{1}{5!}-\frac{1}{4!}\right)+x^7\left(\frac{1}{7!}-\frac{1}{6!}\right)+\cdots=0$$
设$x\ne 0$,约去$x^3$得
$$\left(\frac{1}{3!}-\frac{1}{2!}\right)-x^2\left(\frac{1}{5!}-\frac{1}{4!}\right)+x^4\left(\frac{1}{7!}-\frac{1}{6!}\right)-\cdots=0$$
用韦达定理
\[\sum_{n=1}^{\infty} \frac{1}{\lambda_{n}^{2}} =\frac{\frac{1}{5!}-\frac{1}{4!}}{\frac{1}{3!}-\frac{1}{2!}}=\frac1{10}\]
证毕。
类似可证,$\sum_{n=1}^{\infty} \frac{1}{\lambda_{n}}=\frac10=\infty$
MSE

3147

Threads

8493

Posts

610K

Credits

Credits
66163
QQ

Show all posts

 Author| hbghlyj Posted at 2024-3-26 19:58:52
(韦达定理)多项式$a_0+a_1x+a_2x^2+\cdots$的根的倒数和为$-\dfrac{a_1}{a_0}$

但是这个只限于多项式啊,上面是无穷项,同样操作为啥也行呢

手机版Mobile version|Leisure Math Forum

2025-4-20 22:20 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list