|
Author |
hbghlyj
Posted 2024-4-7 02:36
均匀凸空间的定义:$\displaystyle\forall\epsilon>0,\sup_{\substack{\|\mathbf x_1\|\le1,\|\mathbf x_2\|\le1\\\|\mathbf x_1-\mathbf x_2\|\ge\epsilon}}\|\tfrac{\mathbf x_1+\mathbf x_2}2\|<1$
即:$\forall\epsilon>0$,单位圆盤任取两个点$\mathbf x_1,\mathbf x_2$距离$\ge\epsilon$,它们的中点到原点距离最大值小于1。
$1<p<\infty$时,$(\mathbb{R}^2,\sqrt[p]{\abs x^p+\abs y^p})$是均匀凸空间:
给定一个$\epsilon>0$,设 $\mathbf x_1,\mathbf x_2$ 在单位圆上运动,它们的距离保持为$\epsilon$,
$\mathbf x_1,\mathbf x_2$的中点到原点距离的最大值是一个小于1的值:$\sqrt[p]{1-(\frac\epsilon2)^p}$
以原点为中心再画一个小圆盤,半径为$\sqrt[p]{1-(\frac\epsilon2)^p}$,那么$\mathbf x_1+\mathbf x_2\over2$总是$\in$小圆盤:
它们的中点到原点距离当$\mathbf{x}_1,\mathbf{x_2}$关于x轴或y轴对称时取得最大值。此时$\mathbf x_1+\mathbf x_2\over2$正好在小圆上:
当$\mathbf{x}_1,\mathbf{x}_2$关于y轴对称时它们的x坐标之和为0,y坐标相等,
容易得到:此时它们的x坐标为$\pm\frac{\epsilon}2$,y坐标为$\sqrt[p]{1-(\frac\epsilon2)^p}$
(验证:它们的距离为$\sqrt[p]{\abs{\frac\epsilon2-\frac{-\epsilon}2}^p+\abs{\sqrt[p]{1-(\frac\epsilon2)^p}-\sqrt[p]{1-(\frac\epsilon2)^p}}^p}=\epsilon$,符合要求。)
因此${\mathbf x_1+\mathbf x_2\over2}=\left(0,\sqrt[p]{1-(\frac\epsilon2)^p}\right)$
因此$\mathbf x_1+\mathbf x_2\over2$到原点距离的最大值是一个小于1的值:$\sqrt[p]{1-(\frac\epsilon2)^p}$
$p=1,p=\infty$时,$(\mathbb{R}^2,\sqrt[p]{\abs x^p+\abs y^p})$不是均匀凸空间:
对于$\varepsilon<1$,$\mathbf x_1,\mathbf x_2$ 的中点可以在单位圆上,所以它到原点的最大值是1,不小于1。
如果像上面$1<p<\infty$的情况那样,作一个“小圆盤”把$\mathbf{x}_1,\mathbf{x_2}$中点盖住,就会是整个单位圆盤:
|
|