Forgot password
 Register account
View 281|Reply 2

[数论] $\sqrt D$的连分数的循环周期问题

[Copy link]

6

Threads

245

Posts

6

Reputation

Show all posts

睡神 posted 2024-4-25 12:52 |Read mode
当$D$为非完全平方数时,$\sqrt D$的连分数都可以表示成$[a_0;\overline{a_1,a_2,\cdots ,a_{n-1},2a_0}]$的形式,我们称其为混循环连分数,$\overline{a_1,a_2,\cdots ,a_{n-1},2a_0}$为其循环部分,循环周期为$n$。

证明或否定:“$n$为奇数”的充要条件为“$D=k^2+1$或$D$为$4k+1$形式的素数,其中$k\in N^*$”。

Related collections:

除了不懂,就是装懂

6

Threads

245

Posts

6

Reputation

Show all posts

original poster 睡神 posted 2024-4-25 13:00
$D=k^2+1$这个很容易得证$n=1$,而"$D$为$4k+1$形式的素数"这个怎么处理?
除了不懂,就是装懂

6

Threads

245

Posts

6

Reputation

Show all posts

original poster 睡神 posted 2024-4-25 13:11
循环部分具有对称性,即$a_k=a_{n-k},1\le k\le n-1$
除了不懂,就是装懂

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-20 06:02 GMT+8

Powered by Discuz!

Processed in 0.011412 seconds, 24 queries