Forgot password?
 Register account
View 335|Reply 2

[数论] $\sqrt D$的连分数的循环周期问题

[Copy link]

6

Threads

245

Posts

2284

Credits

Credits
2284

Show all posts

睡神 Posted 2024-4-25 12:52 |Read mode
当$D$为非完全平方数时,$\sqrt D$的连分数都可以表示成$[a_0;\overline{a_1,a_2,\cdots ,a_{n-1},2a_0}]$的形式,我们称其为混循环连分数,$\overline{a_1,a_2,\cdots ,a_{n-1},2a_0}$为其循环部分,循环周期为$n$。

证明或否定:“$n$为奇数”的充要条件为“$D=k^2+1$或$D$为$4k+1$形式的素数,其中$k\in N^*$”。

Related collections:

除了不懂,就是装懂

6

Threads

245

Posts

2284

Credits

Credits
2284

Show all posts

 Author| 睡神 Posted 2024-4-25 13:00
$D=k^2+1$这个很容易得证$n=1$,而"$D$为$4k+1$形式的素数"这个怎么处理?
除了不懂,就是装懂

6

Threads

245

Posts

2284

Credits

Credits
2284

Show all posts

 Author| 睡神 Posted 2024-4-25 13:11
循环部分具有对称性,即$a_k=a_{n-k},1\le k\le n-1$
除了不懂,就是装懂

Mobile version|Discuz Math Forum

2025-6-5 01:48 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit