|
Author |
青青子衿
Posted at 2025-3-9 20:13:23
Last edited by 青青子衿 at 2025-3-11 14:47:46青青子衿 发表于 2025-3-8 17:02
\begin{gather*}
\int_{x}^{+\infty}\frac{{\mathrm{d}}t}{\sqrt{t^{4}+\alpha t^{3}+\beta t^{2}+\gamma t+\delta}}=\frac{2}{u}\int_{\frac{4(6x^{2}+3\alpha x+\beta+6\sqrt{x^{4}+\alpha x^{3}+\beta x^{2}+\gamma x+\delta})}{3u^{2}}}^{+\infty}\frac{{\mathrm{d}}t}{\sqrt{t^{3}+At+B}}\\
\end{gather*}
\begin{gather*}
\qquad\qquad\int_{x}^{S}\frac{\frac{1}{t-\frac{w}{3u^{2}}}+G}{\sqrt{t^{3}+At+B}}{\mathrm{d}t}\qquad\qquad(S\gg{0})\\
=\int_{-\frac{\alpha}{4}-\frac{3u(1-u^{2}\sqrt{x^{3}+Ax+B})}{4(3u^{2}x-w)}}^{-\frac{\alpha}{4}-\frac{3u(1-u^{2}\sqrt{S^{3}+AS+B})}{4(3u^{2}S-w)}}
\frac{\frac{u^{2}}{2}}{t-\frac{(4\beta-w)^{2}-576\delta}{72u}}\left(1-\frac{\frac{24t^{2}+12\alpha t+4\beta-w}{24}-\frac{G}{u}\left(t-\frac{(4\beta-w)^{2}-576\delta}{72u}\right)}{\sqrt{t^{4}+\alpha t^{3}+\beta t^{2}+\gamma t+\delta}}\right)
{\mathrm{d}t} \\
\\
\qquad\quad\int_{x}^{T}\frac{t+H}{\sqrt{t^{4}+\alpha t^{3}+\beta t^{2}+\gamma t+\delta}}{\mathrm{d}t}\qquad\qquad(T\gg{0})\\
=\int_{\frac{4(6x^{2}+3\alpha x+\beta+6\sqrt{x^{4}+\alpha x^{3}+\beta x^{2}+\gamma x+\delta})}{3u^{2}}}^{\frac{4(6T^{2}+3\alpha T+\beta+6\sqrt{T^{4}+\alpha T^{3}+\beta T^{2}+\gamma T+\delta})}{3u^{2}}}
\frac{1}{2u^{2}}\left(\frac{u^{2}}{t-\frac{w}{3u^{2}}}-\frac{\frac{1}{t-\frac{w}{3u^{2}}}+(\alpha-4H)u}{\sqrt{t^{3}+At+B}}\right)
{\mathrm{d}t}\\
\\
\left\{
\begin{split}
A&=\frac{16v}{3u^{4}}=\tfrac{16 \left(3 \alpha \gamma -\beta ^2-12 \delta \right)}{3 \left(\alpha ^3-4 \alpha \beta +8 \gamma \right)^4}\\
B&=\frac{1}{u^{4}}\left(1-\frac{48vw}{27u^{2}}-\frac{w^{3}}{27u^{2}}\right)\\
&=
\tfrac{64 \left(27 \alpha ^2 \delta -9 \alpha \beta \gamma +2 \beta ^3-72 \beta \delta +27 \gamma ^2\right)}{27 \left(\alpha ^3-4 \alpha \beta +8 \gamma \right)^6}\\
u&=\alpha^{3}-4\alpha\beta+8\gamma\\
v&=3\alpha\gamma-\beta^{2}-12\delta\\
w&=3\alpha^{2}-8\beta
\end{split}\right.
\end{gather*}
- \int_{-\frac{\alpha}{4}-\frac{3u(1-u^{2}\sqrt{x^{3}+Ax+B})}{4(3u^{2}x-w)}}^{-\frac{\alpha}{4}-\frac{3u(1-u^{2}\sqrt{S^{3}+AS+B})}{4(3u^{2}S-w)}}\frac{\frac{u^{2}}{2}}{t-\frac{(4\beta-w)^{2}-576\delta}{72u}}\left(1-\frac{\frac{24t^{2}+12\alpha t+4\beta-w}{24}-\frac{G}{u}\left(t-\frac{(4\beta-w)^{2}-576\delta}{72u}\right)}{\sqrt{t^{4}+\alpha t^{3}+\beta t^{2}+\gamma t+\delta}}\right)dt
- \int_{x}^{S}\frac{\frac{1}{t-\frac{w}{3u^{2}}}+G}{\sqrt{t^{3}+At+B}}dt
- \int_{x}^{S}\frac{G}{\sqrt{t^{3}+At+B}}dt
- \int_{-\frac{\alpha}{4}-\frac{3u(1-u^{2}\sqrt{x^{3}+Ax+B})}{4(3u^{2}x-w)}}^{-\frac{\alpha}{4}-\frac{3u(1-u^{2}\sqrt{S^{3}+AS+B})}{4(3u^{2}S-w)}}\frac{\frac{u}{2}G}{\sqrt{t^{4}+\alpha t^{3}+\beta t^{2}+\gamma t+\delta}}dt
- G=1.7
- S=100
- A=\frac{16v}{3u^{4}}
- B=\frac{1}{u^{4}}\left(1-\frac{48vw}{27u^{2}}-\frac{w^{3}}{27u^{2}}\right)
- u=\alpha^{3}-4\alpha\beta+8\gamma
- v=3\alpha\gamma-\beta^{2}-12\delta
- w=3\alpha^{2}-8\beta
- \alpha=4.9
- \beta=3.1
- \gamma=3.4
- \delta=5.7
- \int_{\frac{4(6x^{2}+3\alpha x+\beta+6\sqrt{x^{4}+\alpha x^{3}+\beta x^{2}+\gamma x+\delta})}{3u^{2}}}^{\frac{4(6T^{2}+3\alpha T+\beta+6\sqrt{T^{4}+\alpha T^{3}+\beta T^{2}+\gamma T+\delta})}{3u^{2}}}\frac{1}{2u^{2}}\left(\frac{u^{2}}{t-\frac{w}{3u^{2}}}-\frac{\frac{1}{t-\frac{w}{3u^{2}}}+(\alpha-4H)u}{\sqrt{t^{3}+At+B}}\right)dt
- \int_{x}^{T}\frac{t+H}{\sqrt{t^{4}+\alpha t^{3}+\beta t^{2}+\gamma t+\delta}}dt
- \int_{\frac{4(6x^{2}+3\alpha x+\beta+6\sqrt{x^{4}+\alpha x^{3}+\beta x^{2}+\gamma x+\delta})}{3u^{2}}}^{\frac{4(6T^{2}+3\alpha T+\beta+6\sqrt{T^{4}+\alpha T^{3}+\beta T^{2}+\gamma T+\delta})}{3u^{2}}}\frac{\frac{2H}{u}}{\sqrt{t^{3}+At+B}}dt
- \int_{x}^{T}\frac{H}{\sqrt{t^{4}+\alpha t^{3}+\beta t^{2}+\gamma t+\delta}}dt
- H=1.6
- T=100
Copy the Code
\begin{gather*}
\int\frac{\frac{1}{t-\frac{w}{3u^{2}}}+(\frac{16 v+w^2}{6u}-4\ell)u}{\sqrt{t^{3}+At+B}}
{\mathrm{d}t}\\
\\
\left\{
\begin{split}
A&=\tfrac{16v}{3u^{4}}\\
B&=\tfrac{1}{u^{4}}\left(1-\tfrac{48vw}{27u^{2}}-\tfrac{w^{3}}{27u^{2}}\right)\\
P&=\tfrac{16 v+w^2}{12 u}\\
Q&=\tfrac{\left(16 v+w^2\right)^2}{576 u^2}-\tfrac{w}{16}\\
R&=\tfrac{u}{32}\\
\nu_n&=\tfrac{4PR\cdot\,\!\nu_{n-1}-\nu_{n-1}^2\nu_{n-2}+8R^2}{\nu_{n-1}^2}\\ \nu_3&=0\\ \nu_4&=2Q\\
\ell&=\tfrac{P}{n}+\tfrac{1}{4 n R}\sum _{k=3}^n \nu_{k}\nu_{k+1}
\end{split}\right.
\end{gather*}
\begin{align*}
\end{align*}
\begin{gather*}
{\large\int}\frac{\frac{1}{t-\frac{\xi_{1}}{\xi_{2}}}+\bar{\ell}}{\sqrt{t^{3}+\tfrac{3\xi_{3}}{\xi_{2}^{2}}t+\tfrac{9}{\xi_{2}^{2}}\left(1-\tfrac{\xi_{1}\xi_{3}}{3\xi_{2}}-\tfrac{\xi_{1}^{3}}{9\xi_{2}}\right)}}
{\mathrm{d}t}\\
\\
\left\{
\begin{split}
A&=\tfrac{3\xi_{3}}{\xi_{2}^{2}}\\
B&=\tfrac{9}{\xi_{2}^{2}}\left(1-\tfrac{\xi_{1}\xi_{3}}{3\xi_{2}}-\tfrac{\xi_{1}^{3}}{9\xi_{2}}\right)\\
\nu_n&=\tfrac{\tfrac{\xi_{3}+\xi_{1}^2}{96 }\cdot\,\!\nu_{n-1}-\nu_{n-1}^2\nu_{n-2}+\tfrac{\xi_{2}}{384}}{\nu_{n-1}^2}\\ \nu_3&=0\\
\nu_4&=\tfrac{\left( \xi_{3}+\xi_{1}^2\right)^2}{96\xi_{2}}-\tfrac{\xi_{1}}{8}\\
\bar{\ell}&=\tfrac{n-2}{6n}(\xi_{3}+\xi_{1}^2)-\tfrac{32}{n}\sum _{k=3}^n \nu_{k}\nu_{k+1}
\end{split}\right.
\end{gather*}
- Solve[363 == u/v && -16227 == (3 w)/v^2 &&
- 7338654 == 9/v^2 (1 - (u*w)/(3*v) - u^3/(9*v)), {u, v, w}]
- vi = RecurrenceTable[{v[m] == (V + W*v[m - 1] - v[m - 2]*v[m - 1]^2)/
- v[m - 1]^2, v[3] == 0, v[4] == U}, v, {m, 3, 12}] // Factor;
- Thread[v /@ Range[3, Length[vi] + 2] -> vi];
- (((n - 2) ( 96 W))/(6 n) - (32/n) Sum[v[k]*v[k + 1], {k, 3, n}] /.
- n -> 6) /. Thread[v /@ Range[3, Length[vi] + 2] -> vi] // Factor
- % /. {V -> v/384,
- W -> (w + u^2)/96,
- U -> -u/8 + ( w + u^2)^2/(96 v)} /. {u -> -(121/780),
- v -> -(1/2340), w -> -(601/608400)} // Factor
Copy the Code
|
|