Forgot password?
 Create new account
View 109|Reply 3

[几何] 奇异椭圆曲线 的困惑

[Copy link]

3147

Threads

8493

Posts

610K

Credits

Credits
66163
QQ

Show all posts

hbghlyj Posted at 2024-10-30 23:22:01 |Read mode
Lectures on Elliptic Curves - J.W.S. Cassels page 40 Screenshot 2024-10-30 151927.png

问题:$\begin{cases}
\gamma^2=C  \\
\frac{y+\gamma x}{y-\gamma x}=r+s \gamma \end{cases}$怎么推出$r^2-s^2 C=1$.

3147

Threads

8493

Posts

610K

Credits

Credits
66163
QQ

Show all posts

 Author| hbghlyj Posted at 2024-10-30 23:26:47
$r+s \gamma=\frac{(y+\gamma x)^2}{y^2-C x^2}=\frac{y^2+Cx^2}{y^2-Cx^2}+\frac{2xy}{y^2-Cx^2}\gamma$
$\cases{r=\frac{y^2+Cx^2}{y^2-Cx^2}\\s=\frac{2xy}{y^2-Cx^2}}$
可以验证$r^2-s^2C=1$
但这和本段之前的内容有何关系?

3147

Threads

8493

Posts

610K

Credits

Credits
66163
QQ

Show all posts

 Author| hbghlyj Posted at 2024-10-30 23:28:47
We now have a "twisted" multiplication law on (*).
这句话是什么意思?
看上去(*)是一条二次曲线。在(*)上的乘法?

3147

Threads

8493

Posts

610K

Credits

Credits
66163
QQ

Show all posts

 Author| hbghlyj Posted at 2024-10-30 23:41:52
曲线$\mathcal{C}$的齐次方程为$Y^2 Z=X^2(X+C Z)$
是不是说,把三次曲线$\mathcal{C}$上的点(x,y,z)对应到二次曲线(*)上的点(r,s)?还是看不懂啊

手机版Mobile version|Leisure Math Forum

2025-4-20 22:28 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list