Forgot password?
 Create new account
View 162|Reply 9

求行列式的值 2024-10-13

[Copy link]

123

Threads

463

Posts

3299

Credits

Credits
3299

Show all posts

TSC999 Posted at 2024-10-13 20:14:26 |Read mode
Last edited by hbghlyj at 2025-3-9 18:21:28求下面 n 阶行列式的值:
$$D_n=\begin{vmatrix}
1+x & x & x & \cdots & x & x \\
x & 2+x & x & \cdots & x & x \\
\vdots & \vdots & \ddots & \ddots & \vdots & \vdots\\
\vdots & \vdots & \ddots & \ddots & x & \vdots\\
x & x & \cdots & x & n-1+x & x \\
x & x & x & \cdots & x & n+x
\end{vmatrix}$$这个行列式的值为 \(D_n=a x+n!\),其中 \(a\) 是一个正整数,其值如何求出?
经实际计算知:
\begin{aligned}
& D_2=3 x+2, \\
& D_3=11 x+6, \\
& D_4=50 x+24, \\
& D_5=274 x+120, \\
& D_6=1764 x+720, \\
& D_7=13068 x+5040, \\
& D_8=109584 x+40320,
\end{aligned}

701

Threads

110K

Posts

910K

Credits

Credits
94172
QQ

Show all posts

kuing Posted at 2024-10-13 22:04:22
\[D_n=\begin{vmatrix}
1+x & x & x & \cdots & x & x \\
x & 2+x & x & \cdots & x & x \\
\vdots & \vdots & \ddots & \ddots & \vdots & \vdots\\
\vdots & \vdots & \ddots & \ddots & x & \vdots\\
x & x & \cdots & x & n-1+x & x \\
x & x & x & \cdots & x & n+x
\end{vmatrix},\]
对最后一行拆项,有
\begin{align*}
D_n&=\begin{vmatrix}
1+x & x & x & \cdots & x & x \\
x & 2+x & x & \cdots & x & x \\
\vdots & \vdots & \ddots & \ddots & \vdots & \vdots\\
\vdots & \vdots & \ddots & \ddots & x & \vdots\\
x & x & \cdots & x & n-1+x & x \\
x & x & x & \cdots & x & x
\end{vmatrix}+\begin{vmatrix}
1+x & x & x & \cdots & x & x \\
x & 2+x & x & \cdots & x & x \\
\vdots & \vdots & \ddots & \ddots & \vdots & \vdots\\
\vdots & \vdots & \ddots & \ddots & x & \vdots\\
x & x & \cdots & x & n-1+x & x \\
0 & 0 & 0 & \cdots & 0 & n
\end{vmatrix}\\
&=\begin{vmatrix}
1 & 0 & 0 & \cdots & 0 & 0 \\
0 & 2 & 0 & \cdots & 0 & 0 \\
\vdots & \vdots & \ddots & \ddots & \vdots & \vdots\\
\vdots & \vdots & \ddots & \ddots & 0 & \vdots\\
0 & 0 & \cdots & 0 & n-1 & 0 \\
x & x & x & \cdots & x & x
\end{vmatrix}+n\cdot\begin{vmatrix}
1+x & x & x & \cdots & x \\
x & 2+x & x & \cdots & x \\
\vdots & \vdots & \ddots & \ddots & \vdots\\
\vdots & \vdots & \ddots & \ddots & x \\
x & x & \cdots & x & n-1+x
\end{vmatrix},\\
&=x\cdot(n-1)!+n\cdot D_{n-1},
\end{align*}
两边除以 `n!` 即
\[\frac{D_n}{n!}=\frac xn+\frac{D_{n-1}}{(n-1)!},\]
而 `D_1=1+x`,因此
\begin{align*}
\frac{D_n}{n!}&=\left(\frac1n+\frac1{n-1}+\cdots+\frac12\right)x+D_1\\
&=\left(\frac1n+\frac1{n-1}+\cdots+\frac12+1\right)x+1,
\end{align*}
所以
\[D_n=n!\left(\frac1n+\frac1{n-1}+\cdots+\frac12+1\right)x+n!.\]

25

Threads

1020

Posts

110K

Credits

Credits
12672

Show all posts

战巡 Posted at 2024-10-13 22:27:38
\[D_n=Diag(1,2,...,n)+xJ_{n\times n}=Diag(1,2,...,n)+\begin{pmatrix}\sqrt{x}\\\sqrt{x}\\...\\\sqrt{x}\end{pmatrix}\begin{pmatrix}\sqrt{x} &\sqrt{x} &...&\sqrt{x}\end{pmatrix}\]
这里简单起见令$\begin{pmatrix}\sqrt{x} &\sqrt{x} &...&\sqrt{x}\end{pmatrix}=\boldsymbol{y}$,即
\[D_n=Diag(1,2,...,n)+\boldsymbol{y}^T\boldsymbol{y}\]

\[\det(D_n)=\det(Diag(1,2,...,n)+\boldsymbol{y}^T\boldsymbol{y})\]
\[=\det(Diag(1,2,...,n))\det(1+\boldsymbol{y}\cdot Diag(1,2,...,n)^{-1}\boldsymbol{y}^T)\]
\[=\det(Diag(1,2,...,n))\det(1+\boldsymbol{y}\cdot Diag(1,\frac{1}{2},...,\frac{1}{n})\boldsymbol{y}^T)\]
\[=\det(Diag(1,2,...,n))\det(1+x(1+\frac{1}{2}+...+\frac{1}{n}))\]
\[=n!(1+x(1+\frac{1}{2}+...+\frac{1}{n}))\]

这里很关键的一步,是利用如下定理:
\[\det(X+AB)=\det(X)\det(I+BX^{-1}A)\]

3147

Threads

8493

Posts

610K

Credits

Credits
66163
QQ

Show all posts

hbghlyj Posted at 2024-10-14 00:31:33
战巡 发表于 2024-10-13 14:27
这里很关键的一步,是利用如下定理:
\[\det(X+AB)=\det(X)\det(I+BX^{-1}A)\]

证明可以在 math.stackexchange.com/questions/1125384/ 找到

123

Threads

463

Posts

3299

Credits

Credits
3299

Show all posts

 Author| TSC999 Posted at 2024-10-14 18:50:37
2# 楼的解法中,最后如何由递推公式 \(D_n=n D_{n-1}+x(n-1)!\) 和初始条件 \(D_1=1+x\)
求出 \(D_n\) 的通项公式? 如果离开这个行列式去解答,如何解这个递推方程?

701

Threads

110K

Posts

910K

Credits

Credits
94172
QQ

Show all posts

kuing Posted at 2024-10-14 19:10:33
TSC999 发表于 2024-10-14 18:50
2# 楼的解法中,最后如何由递推公式 \(D_n=n D_{n-1}+x(n-1)!\) 和初始条件 \(D_1=1+x\)
求出 \(D_n\) 的 ...
?你到底有没有看完?我不是写了求解过程了吗?

123

Threads

463

Posts

3299

Credits

Credits
3299

Show all posts

 Author| TSC999 Posted at 2024-10-15 09:25:48
kuing 发表于 2024-10-14 19:10
?你到底有没有看完?我不是写了求解过程了吗?
如果脱离那个行列式,如何只从递推公式求出通项公式?

701

Threads

110K

Posts

910K

Credits

Credits
94172
QQ

Show all posts

kuing Posted at 2024-10-15 10:09:07
TSC999 发表于 2024-10-15 09:25
如果脱离那个行列式,如何只从递推公式求出通项公式?
我真的是无语😮‍💨
我 2# 写的最后那几行,就是这部分:
两边除以 `n!` 即
\[\frac{D_n}{n!}=\frac xn+\frac{D_{n-1}}{(n-1)!},\]
而 `D_1=1+x`,因此
\begin{align*}
\frac{D_n}{n!}&=\left(\frac1n+\frac1{n-1}+\cdots+\frac12\right)x+D_1\\
&=\left(\frac1n+\frac1{n-1}+\cdots+\frac12+1\right)x+1,
\end{align*}
所以
\[D_n=n!\left(\frac1n+\frac1{n-1}+\cdots+\frac12+1\right)x+n!.\]

就已经完全和行列式无关了啊

123

Threads

463

Posts

3299

Credits

Credits
3299

Show all posts

 Author| TSC999 Posted at 2024-10-15 19:51:43
是这个意思吧:
由递推公式求通项公式的一种方法.png

701

Threads

110K

Posts

910K

Credits

Credits
94172
QQ

Show all posts

kuing Posted at 2024-10-15 20:21:26
Last edited by kuing at 2024-10-15 20:40:00
TSC999 发表于 2024-10-15 19:51
是这个意思吧:
不用写得这么繁琐,对 `\frac{D_n}{n!}=\frac xn+\frac{D_{n-1}}{(n-1)!}` 这条式子不断迭代下去就是了,即
\begin{align*}
\frac{D_n}{n!}&=\frac xn+\frac{D_{n-1}}{(n-1)!}\\
&=\frac xn+\frac x{n-1}+\frac{D_{n-2}}{(n-2)!}\\
&=\frac xn+\frac x{n-1}+\frac x{n-2}+\frac{D_{n-3}}{(n-3)!}\\
&=\cdots=\frac xn+\frac x{n-1}+\cdots+\frac x2+\frac{D_1}{1!},
\end{align*}
也就是
\begin{align*}
\frac{D_n}{n!}&=\left(\frac1n+\frac1{n-1}+\cdots+\frac12\right)x+D_1\\
&=\cdots
\end{align*}

这些是高中基础技巧,而我见你也是老会员了,应该很熟,所以就省略这一步,没想到……很抱歉……

手机版Mobile version|Leisure Math Forum

2025-4-20 22:18 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list