Forgot password?
 Create new account
View 148|Reply 6

[函数] 四次方程有三重根没有四重根的条件

[Copy link]

462

Threads

969

Posts

9934

Credits

Credits
9934

Show all posts

青青子衿 Posted at 2024-10-30 16:24:12 |Read mode
Last edited by 青青子衿 at 2024-10-30 16:45:00
四次方程$ax^4 + bx^3 + cx^2 + dx + e$
满足{6 b e - c d, 16 a e - b d, 3 b^2 - 8 a c}都等于零,是不是就有四重根了?

四次方程$ax^4 + bx^3 + cx^2 + dx + e$
什么条件下,有三重根而没有四重根?
kuing.cjhb.site/forum.php?mod=viewthread&tid=12442

83

Threads

51

Posts

763

Credits

Credits
763

Show all posts

lihpb Posted at 2024-10-30 16:36:34
求导,然后辗转相除

Comment

,然后求公因式  Posted at 2024-11-2 16:49

3147

Threads

8493

Posts

610K

Credits

Credits
66163
QQ

Show all posts

hbghlyj Posted at 2024-10-30 17:02:00

四次方程恰有两个不同的根的条件

Find conditions for a quartic to have exactly two distinct roots:
$f = a x^4 + b x^3 + c x^2 + d x + e,\;a\ne0$恰有两个不同的根的条件是
$$\left(d=\frac{-b^3+4 a b c}{8 a^2}\lor d=\frac{-9 b^3+36 a b c\pm\sqrt{3} \sqrt{27 b^6-216 a b^4 c+576 a^2 b^2 c^2-512 a^3 c^3}}{72 a^2}\right)$$
$$\land -3 b^2+8 a c \neq 0 \land e=\frac{b^2 c^2-4 a c^3-3 b^3 d+14 a b c d-18 a^2 d^2}{6 a b^2-16 a^2 c}$$

3147

Threads

8493

Posts

610K

Credits

Credits
66163
QQ

Show all posts

hbghlyj Posted at 2024-10-30 17:03:11
恰有两个不同的实根的条件是
恰有两个不同的虚根的条件是

462

Threads

969

Posts

9934

Credits

Credits
9934

Show all posts

 Author| 青青子衿 Posted at 2024-10-30 17:45:21

恰有两个不同的实根的条件是

hbghlyj 发表于 2024-4-26 00:30
恰有两个不同的实根的条件是
恰有两个不同的虚根的条件是
en.wikipedia.org/wiki/Quartic_function
\begin{align*}
\Delta = {} &256 a^3 e^3 - 192 a^2 b d e^2 - 128 a^2 c^2 e^2 + 144 a^2 c d^2 e - 27 a^2 d^4 \\
&+ 144 a b^2 c e^2 - 6 a b^2 d^2 e - 80 a b c^2 d e + 18 a b c d^3 + 16 a c^4 e \\
&- 4 a c^3 d^2 - 27 b^4 e^2 + 18 b^3 c d e - 4 b^3 d^3 - 4 b^2 c^3 e + b^2 c^2 d^2
\end{align*}

\begin{align*}
D = 64 a^3 e - 16 a^2 c^2 + 16 a b^2 c - 16 a^2 bd - 3 b^4
\end{align*}

\begin{align*}
P&= 8ac - 3b^2\\
R&= b^3+8da^2-4abc
\end{align*}

If $\Delta=0$ then (and only then) the polynomial has a multiple root.
If $D = 0$, then:
***If $P<0$, there are two real double roots.
***If $P>0$ and $R=0$, there are two complex conjugate double roots.

462

Threads

969

Posts

9934

Credits

Credits
9934

Show all posts

 Author| 青青子衿 Posted at 2025-3-11 15:51:12
青青子衿 发表于 2024-10-30 17:45
en.wikipedia.org/wiki/Quartic_function
\begin{align*}
P&= 8ac - 3b^2\\
R&= b^3+8da^2-4abc
\end{align*}
为啥这里面的子判别式会出现在这个行列式里?
\begin{align*}
\begin{vmatrix}
3 b^2-8 a c & b c-6 a d & b d-16 a e \\
b c-6 a d & -4 a e-2 b d+c^2 & c d-6 b e \\
b d-16 a e & c d-6 b e & 3 d^2-8 c e \\
\end{vmatrix}=4\operatorname{Discr}[a x^4+b x^3+c x^2+d x+e]
\end{align*}
kuing.cjhb.site/forum.php?mod=viewthread&tid=12939

手机版Mobile version|Leisure Math Forum

2025-4-20 22:25 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list