Forgot password?
 Create new account
View 79|Reply 2

[几何] 正n棱錐 側面的顶角 与 立体角的关系?

[Copy link]

3148

Threads

8497

Posts

610K

Credits

Credits
66188
QQ

Show all posts

hbghlyj Posted at 2024-11-12 10:09:50 |Read mode
正n (n>2)棱錐各側面的顶角为 $α$ ($0<α<2π/n$),所围成的立体角 ω 为?

当n=3时,$ω=3 \cos^{-1}(\tan(α/2) \cot(α)) - π$
当n=4时,$ω=$

3148

Threads

8497

Posts

610K

Credits

Credits
66188
QQ

Show all posts

 Author| hbghlyj Posted at 2024-11-12 10:23:19
$$ω= 2π  - 2n \cot^{-1}\left(\cot(\fracπn)\sqrt{\frac{ \cos(\frac{2 π}n) -1}{ \cos(\frac{2 π}n) -\cos(\alpha)}}\right)$$
对吗

  1. Series[2 (Pi - n ArcCot[Sqrt[(-1 + Cos[(2 Pi)/n])/(Cos[(2 Pi)/n] - Cos[α])] Cot[Pi/n]]), {α, 0, 6}]
Copy the Code

ω在$α=0$处的Taylor series为:$$\frac14 α^2 n \cot(\fracπn) -\frac1{192} α^4 n\left(\cos(\frac{2 π}n) - 4\right) \cot(\fracπn) \csc^2(\fracπn)+O(α^6)$$

3148

Threads

8497

Posts

610K

Credits

Credits
66188
QQ

Show all posts

 Author| hbghlyj Posted at 2024-11-13 07:31:18

顶一下!

如何证明以上公式呢?

手机版Mobile version|Leisure Math Forum

2025-4-21 01:34 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list