Forgot password?
 Create new account
View 98|Reply 1

[几何] 四面体的棱长与二面角的联系

[Copy link]

3146

Threads

8493

Posts

610K

Credits

Credits
66158
QQ

Show all posts

hbghlyj Posted at 2024-11-11 04:26:47 |Read mode
mathoverflow.net/questions/336464/a-curious-r … ges-of-a-tetrahedron

考虑一个四面体,其棱长为
$$
l_{12}, l_{13}, l_{14}, l_{23}, l_{24}, l_{34}
$$
二面角为
$$
\alpha_{12}, \alpha_{13}, \alpha_{14},
\alpha_{23}, \alpha_{24}, \alpha_{34}.
$$
立体角为
\begin{split}
    &\Omega_1=\alpha_{12}+\alpha_{13}+\alpha_{14}-\pi \\
    &\Omega_2=\alpha_{12}+\alpha_{23}+\alpha_{24}-\pi \\
    &\Omega_3=\alpha_{13}+\alpha_{23}+\alpha_{34}-\pi \\
    &\Omega_4=\alpha_{14}+\alpha_{24}+\alpha_{34}-\pi \\
\end{split}各面的周长为
\begin{split}
    &P_1=l_{23}+l_{34}+l_{24} \\
    &P_2=l_{13}+l_{14}+l_{34} \\
    &P_3=l_{12}+l_{14}+l_{24} \\
    &P_4=l_{12}+l_{23}+l_{13}. \\
\end{split}那么以下交比相等:
$$
[e^{i\Omega_1}, e^{i\Omega_2}, e^{i\Omega_3}, e^{i\Omega_4}]=[P_1, P_2, P_3, P_4].
$$
其中,“交比”$[a,b,c,d]$的定义为$[a,b,c,d]=\frac{(a-c)(b-d)}{(a-d)(b-c)}$.

3146

Threads

8493

Posts

610K

Credits

Credits
66158
QQ

Show all posts

 Author| hbghlyj Posted at 2024-11-16 00:18:03
如何证明呢?

手机版Mobile version|Leisure Math Forum

2025-4-20 22:06 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list