Forgot password?
 Create new account
View 171|Reply 3

[函数] $\sin(x)>x(1-\frac{x}{\pi})(1+\frac{x}{\pi})(1-\frac{x}{2\pi})$

[Copy link]

3147

Threads

8497

Posts

610K

Credits

Credits
66183
QQ

Show all posts

hbghlyj Posted at 2024-11-18 20:33:36 |Read mode
关于这帖的$\sin(x)>x\left(1-\frac{x}{\pi}\right)$,能不能加强为
$$\sin(x)>x\left(1-\frac{x}{\pi}\right)\left(1+\frac{x}{\pi}\right)\left(1-\frac{x}{2\pi}\right)\qquad\forall x\in(0,\pi)$$

1

Threads

104

Posts

1771

Credits

Credits
1771

Show all posts

Aluminiumor Posted at 2024-11-25 19:07:03
Last edited by Aluminiumor at 2024-11-25 19:14:00联想到了巴塞尔问题,所以是否可以直接用 Weierstrass factorization theorem 分解 $\frac{\sin x}{x}$ 来证明?

3147

Threads

8497

Posts

610K

Credits

Credits
66183
QQ

Show all posts

 Author| hbghlyj Posted at 2024-11-26 22:16:37
Aluminiumor 发表于 2024-11-25 11:07
用 Weierstrass factorization theorem
如何证明Weierstrass factorization theorem呢

3147

Threads

8497

Posts

610K

Credits

Credits
66183
QQ

Show all posts

 Author| hbghlyj Posted at 2025-1-29 23:23:40
Aluminiumor 发表于 2024-11-25 11:07
直接用 Weierstrass factorization theorem 分解
扩展复平面 $\mathbb{CP}^1$ 的亚纯函数都是有理函数,这与复平面 $\mathbb{C}$ 上的亚纯函数的情况有显著不同。事实上,复平面 $\mathbb{C}$ 上存在大量的全纯函数——参见 Ahlfors 1953 年的《Complex Analysis》IV 3.3 对它们的分类。

手机版Mobile version|Leisure Math Forum

2025-4-21 01:30 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list