Forgot password?
 Create new account
View 120|Reply 3

[数列] $w$不断代入自身

[Copy link]

3147

Threads

8497

Posts

610K

Credits

Credits
66183
QQ

Show all posts

hbghlyj Posted at 2025-1-10 21:37:40 |Read mode
Silverman-Arithmetic_of_EC.pdf page 116, Proposition 1.1.


$$w=f(z, w)=z^3+A w^2 z+B w^3$$
代入自身$$w=f(z, w)=f(z, f(z, w))=z^3+A\left(z^3+A w^2 z+B w^3\right)^2 z+B\left(z^3+A w^2 z+B w^3\right)^3$$
不断代入自身
\[
w=z^3+A z^7+\ldots
\]
求证:$z$的各次幂系数$1,A,\ldots$当代入足够多次时是固定的。

3147

Threads

8497

Posts

610K

Credits

Credits
66183
QQ

Show all posts

 Author| hbghlyj Posted at 2025-1-10 22:08:40
等价于:
递归定义多项式列$f_n(z, w)$:
$ f_1(z, w)=f(z, w)=z^3+A w^2 z+B w^3$
$f_{n+1}(z, w)=f_n(z, f(z, w))$
求证:$f_n(z, w)$中$z$的各次幂系数不含$w$的部分当$n$足够大时是固定的。

3147

Threads

8497

Posts

610K

Credits

Credits
66183
QQ

Show all posts

 Author| hbghlyj Posted at 2025-1-10 22:13:12
$z^3 + w^2 z + w^3$代入5次试试看:
  1. Expand[NestList[Function[w, z^3 + w^2 z + w^3], w, 5] /. w -> 0]
Copy the Code

每次增加2个固定的项
$z^3$
$z^3+z^7+z^9+\dots$
$z^3+z^7+z^9+2 z^{11}+5 z^{13}+\dots$
$z^3+z^7+z^9+2 z^{11}+5 z^{13}+8 z^{15}+21 z^{17}+\dots$
$z^3+z^7+z^9+2 z^{11}+5 z^{13}+8 z^{15}+21 z^{17}+42 z^{19}+96 z^{21}+\dots$

3147

Threads

8497

Posts

610K

Credits

Credits
66183
QQ

Show all posts

 Author| hbghlyj Posted at 2025-1-11 02:33:38
hbghlyj 发表于 2025-1-10 14:13
$z^3 + w^2 z + w^3$代入5次试试看:

每次增加2个固定的项
如何证明$w=z^3 + w^2 z + w^3$不断代入自身得到的固定的$z$各次幂系数为oeis.org/A001005
a(n) = Sum_{k=1..floor(n/2)} C(n,k-1)*C(k,n-2k)/k
$1, 2, 5, 8, 21, 42, 96\dots$

手机版Mobile version|Leisure Math Forum

2025-4-21 01:27 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list