Forgot password?
 Create new account
View 211|Reply 6

[不等式] 超越不等式1

[Copy link]

22

Threads

70

Posts

607

Credits

Credits
607

Show all posts

lxz2336831534 Posted at 2025-1-30 02:10:56 From the mobile phone |Read mode
Last edited by hbghlyj at 2025-4-10 16:54:29\[
\begin{aligned}
& x \in[1,+\infty) \\
& e^{\frac{2}{x}-2} \geq \frac{3+15 x-(x+9) \ln (x)}{(3 x-1)(7 \ln (x)+9)}
\end{aligned}
\]
比较紧的一元超越不等式,老题

22

Threads

70

Posts

607

Credits

Credits
607

Show all posts

 Author| lxz2336831534 Posted at 2025-1-30 02:20:12 From the mobile phone
Last edited by hbghlyj at 2025-4-10 16:54:15可从中插入\[
\frac{x^2+x+1}{7 x^2-5 x+1}
\]
来证明,但照样复杂

700

Threads

110K

Posts

910K

Credits

Credits
94177
QQ

Show all posts

kuing Posted at 2025-1-30 16:19:59
Last edited by kuing at 2025-1-30 16:28:00
lxz2336831534 发表于 2025-1-30 02:20
可从中插入g(x)=((x^(2)+x+1)/(7 x^(2)-5 x+1))
来证明,但照样复杂

这个 (x^2+x+1)/(7x^2-5x+1) 是 e^(2/x-2) 的 2/2 pade 逼近吧,还不够呢。

我画图看了,当 x>1 时 (x^2+x+1)/(7x^2-5x+1) > e^(2/x-2),并不在两者之间。

继续升次到 3/3 pade 逼近,就是
\[h(x)=\frac{5 x^3+6 x^2+3 x+1}{37 x^3-30 x^2+9 x-1},\]
画图看似乎可以。

22

Threads

70

Posts

607

Credits

Credits
607

Show all posts

 Author| lxz2336831534 Posted at 2025-1-30 17:01:58 From the mobile phone
如此一来,电脑证明也很复杂。确实是一道很复杂的题。

22

Threads

70

Posts

607

Credits

Credits
607

Show all posts

 Author| lxz2336831534 Posted at 2025-1-30 17:03:13 From the mobile phone
反向求出lnx或许可以

700

Threads

110K

Posts

910K

Credits

Credits
94177
QQ

Show all posts

kuing Posted at 2025-1-30 17:43:02
Last edited by kuing at 2025-1-30 18:17:00
lxz2336831534 发表于 2025-1-30 17:03
反向求出lnx或许可以
嗯,有电脑就没问题。

下面证明当 `x\geqslant1` 时有
\[e^{2/x-2}\geqslant\frac{5x^3+6x^2+3x+1}{37x^3-30x^2+9x-1}\geqslant\frac{3+15x-(x+9)\ln x}{(3x-1)(7\ln x+9)}.\]

先证左边:等价于
\[f(x)=e^{2-2/x}\frac{5x^3+6x^2+3x+1}{37x^3-30x^2+9x-1}\leqslant1,\]
求导得
\[f'(x)=-\frac{2e^{2-2/x}(x-1)^6}{x^2(37x^3-30x^2+9x-1)^2}\leqslant0\riff f(x)\leqslant f(1)=1;\]

再证右边:去分母再按 `\ln x` 整理可知等价于
\[\ln x\geqslant\frac{210x^4-228x^3+9x^2+6x+3}{71x^4+197x^3-120x^2+40x-8},\]
下面证明
\[\ln x\geqslant\frac{3(x^2-1)}{x^2+4x+1}\geqslant\frac{210x^4-228x^3+9x^2+6x+3}{71x^4+197x^3-120x^2+40x-8},\]
左边令
\[g(x)=\ln x-\frac{3(x^2-1)}{x^2+4x+1},\]
求导得
\[g'(x)=\frac{(x-1)^4}{x(x^2+4x+1)^2}\geqslant0\riff g(x)\geqslant g(1)=0,\]
右边直接作差分解有
\begin{align*}
&\frac{3(x^2-1)}{x^2+4x+1}-\frac{210x^4-228x^3+9x^2+6x+3}{71x^4+197x^3-120x^2+40x-8}\\
={}&\frac{3(x-1)^3\bigl(x(x-2)^2+7(3x-1)\bigr)}{(x^2+4x+1)(71x^4+197x^3-120x^2+40x-8)}\geqslant0.
\end{align*}

综上得证。

22

Threads

70

Posts

607

Credits

Credits
607

Show all posts

 Author| lxz2336831534 Posted at 2025-2-1 18:02:25 From the mobile phone
感谢

手机版Mobile version|Leisure Math Forum

2025-4-21 01:21 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list