Forgot password?
 Register account
View 333|Reply 6

[函数] 请教一个三次方程相关的命题

[Copy link]

414

Threads

905

Posts

110K

Credits

Credits
10998

Show all posts

lemondian Posted 2025-2-15 18:37 |Read mode
Last edited by hbghlyj 2025-5-16 22:22若 $x_i(i=1,2,3)$ 是方程 $x^3+a x^2+b x+c=0(a, b, c \inR)$ 的三个实数根,则$$\sqrt[3]{u+x_1}+\sqrt[3]{u+x_2}+\sqrt[3]{u+x_3}=\sqrt[3]{v \pm 3(\sqrt{d})^{\frac{1}{3}}}$$其中$$d=-D=\frac{4\left(a^2-3 b\right)^3-\left(2 a^3-9 a b+27 c\right)^2}{27}$$$$u=\frac{a b-9 c \pm \sqrt{d}}{2\left(a^2-3 b\right)}$$$$v=-\frac{\left(2 a^3-9 a b+27 c\right) \pm 9 \sqrt{d}}{2\left(a^2-3 b\right)} .
$$

1

Threads

15

Posts

334

Credits

Credits
334
QQ

Show all posts

ZCos666 Posted 2025-2-15 20:09
这实际上是拉马努金三角恒等式的推广
\[ \sqrt[3]{\cos\dfrac{2\pi}{9}}+\sqrt[3]{\cos\dfrac{4\pi}{9}}+\sqrt[3]{\cos\dfrac{8\pi}{9}}=\sqrt[3]{\dfrac{3}{2}\left(\sqrt[3]{9}-2\right)} \]

682

Threads

110K

Posts

910K

Credits

Credits
90973
QQ

Show all posts

kuing Posted 2025-2-15 20:32
Last edited by hbghlyj 2025-5-16 22:23与这两帖的东东有关:
forum.php?mod=viewthread&tid=5138#pid25073
forum.php?mod=viewthread&tid=8007

414

Threads

905

Posts

110K

Credits

Credits
10998

Show all posts

 Author| lemondian Posted 2025-2-15 20:37
两位,能证明1#的命题吗?

1

Threads

15

Posts

334

Credits

Credits
334
QQ

Show all posts

ZCos666 Posted 2025-2-15 21:49
lemondian 发表于 2025-2-15 20:37
两位,能证明1#的命题吗?
如果你看了3#的两个例子并学会了,就应该能自行验证推广式的正确了😁

Comment

搞了好久,证不出来哩,所以来求助  Posted 2025-2-15 22:05

414

Threads

905

Posts

110K

Credits

Credits
10998

Show all posts

 Author| lemondian Posted 2025-2-16 15:01
顶一个

Mobile version|Discuz Math Forum

2025-6-5 07:41 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit