Forgot password?
 Create new account
View 163|Reply 2

[不等式] 复数不等式

[Copy link]

5

Threads

2

Posts

55

Credits

Credits
55

Show all posts

jhsinutopia Posted at 2025-3-10 16:44:26 |Read mode
$x,y,z\in\mathbb{C}$, $|x|^2+|y|^2+|z|^2=1$
Prove that: $|x^3+y^3+z^3-3xyz|\le1$

Related threads

3147

Threads

8493

Posts

610K

Credits

Credits
66163
QQ

Show all posts

hbghlyj Posted at 2025-3-10 16:57:33
给定条件意味着矩阵的每个列向量
\[A = \begin{bmatrix*}
x & y & z\\
y & z & x\\
z & x & y
\end{bmatrix*}\]的模为1,因此根据Hadamard不等式
\[|x^3 + y^3 + z^3 - 3xyz| = \left|\det A\right| \le 1.\]

701

Threads

110K

Posts

910K

Credits

Credits
94177
QQ

Show all posts

kuing Posted at 2025-3-11 13:56:54
Last edited by kuing at 2025-3-11 14:20:44以前证过实数范围内的(《撸题集》P.897),没想到在复数范围也成立😃

能否利用实数范围内的结果来证明呢?
(看来不太行,毕竟 `\abs{x^3+y^3+z^3-3xyz}\leqslant\abs x^3+\abs y^3+\abs z^3-3\abs{xyz}` 是不成立的😥

手机版Mobile version|Leisure Math Forum

2025-4-20 22:20 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list