|
Last edited by hbghlyj 2025-5-27 22:54The determinant of a circulant matrix $C$ with first row $(c_0, c_1, \dots, c_{n-1})$ is given by the product of the eigenvalues:
$$\det(C) = \prod_{k=0}^{n-1} (c_0 + c_1\omega^k + c_2\omega^{2k} + \dots + c_{n-1}\omega^{(n-1)k})$$
where $\omega = e^{2\pi i/n}$ is a primitive $n$-th root of unity.
For $n=2$, apply the Hadamard inequality to $C$,$$|(x+y)(x-y)| \le|x|^2+|y|^2\quad\forall x,y\inC$$
For $n=3$, apply the Hadamard inequality to $C$,$$|x^3+y^3+z^3-3xyz| \le (|x|^2+|y|^2+|z|^2)^{3/2}\quad\forall x,y,z\inC$$
For $n=4$, apply the Hadamard inequality to $C$,$$|(x+y+z+w)(x-y+z-w)((x-z)^2 + (y-w)^2)| \le (|x|^2+|y|^2+|z|^2+|w|^2)^2\quad\forall x,y,z,w\inC$$ |
|