Forgot password
 Register account
View 270|Reply 3

[不等式] 若x,y,z都是正实数,且$x^2+y^2+z^2=1,则yz/x+xz/y+xy/z$的最小值是多少?

[Copy link]

138

Threads

744

Posts

3

Reputation

Show all posts

走走看看 posted 2025-3-14 18:48 |Read mode
Last edited by 走走看看 2025-3-14 20:16若 $x, y, z$ 是正实数,且 $x^2+y^2+z^2=1$ ,则 $\frac{y z}{x}+\frac{x z}{y}+\frac{x y}{z}$ 的最小值为多少?
\[
\begin{aligned}
& \frac{y z}{x}+\frac{x z}{y}+\frac{x y}{z}=\left(\frac{y z}{x}+\frac{x z}{y}+\frac{x y}{z}\right)\left(x^2+y^2+z^2\right) \\
& =3 x y z+\frac{y^3 z}{x}+\frac{y z^3}{x}+\frac{x^3 z}{y}+\frac{x z^3}{y}+\frac{x^3 y}{z}+\frac{x y^3}{z} \\
& \geqslant 9 x y z \\
& \because x^2 y^2 z^2 \leqslant\left[\frac{x^2+y^2+z^2}{3}\right]^3 \\
& \therefore x y z \leqslant \sqrt{\frac{1}{27}} \\
& \text { 故原式 } \geqslant 9 \sqrt{\frac{1}{27}}=\sqrt{3}
\end{aligned}
\]
qb.zuoyebang.com/xfe-question/question/e8e2e2 … 1607d53849bb768.html

请教大家,答案是$\sqrt{3}$,但这种写法是否算对。总觉得9xyz后的一段不应该有,而且不等号也不匹配。

0

Threads

406

Posts

6

Reputation

Show all posts

爪机专用 posted 2025-3-14 19:06
这证明是错的
I am majia of kuing

0

Threads

406

Posts

6

Reputation

Show all posts

爪机专用 posted 2025-3-14 19:20
$(a+b+c)^2\ge3(ab+bc+ca)$ 代 $a,b,c=\frac{y z}{x},\frac{x z}{y},\frac{x y}{z}$ 就行了
I am majia of kuing

138

Threads

744

Posts

3

Reputation

Show all posts

original poster 走走看看 posted 2025-3-14 20:13
爪机专用 发表于 2025-3-14 19:20
$(a+b+c)^2\ge3(ab+bc+ca)$ 代 $a,b,c=\frac{y z}{x},\frac{x z}{y},\frac{x y}{z}$ 就行了
高手,洞察问题的本质!

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-20 05:58 GMT+8

Powered by Discuz!

Processed in 0.011545 seconds, 25 queries