Forgot password?
 Register account
View 6954|Reply 4

后两类椭圆积分的加法

[Copy link]

459

Threads

952

Posts

9843

Credits

Credits
9843

Show all posts

青青子衿 Posted 2025-3-23 11:40 |Read mode
Last edited by hbghlyj 2025-5-12 19:15
\begin{align*}
&\quad\phantom{=}\int_{0}^{u}\frac{t^{2}}{\sqrt{(t^{2}-\chi)^{2}+\psi^{2}}}{\mathrm{d}t}
+\int_{0}^{v}\frac{t^{2}}{\sqrt{(t^{2}-\chi)^{2}+\psi^{2}}}{\mathrm{d}t}\\
&=\int_{0}^{w}\frac{t^{2}}{\sqrt{(t^{2}-\chi)^{2}+\psi^{2}}}{\mathrm{d}t}-\frac{4A(A+\chi)uvw}{(u^{2}+A)(v^{2}+A)(w^{2}+A)}\\
&\qquad+\frac{u\sqrt{(u^{2}-\chi)^{2}+\psi^{2}}}{u^{2}+A}+\frac{v\sqrt{(v^{2}-\chi)^{2}+\psi^{2}}}{v^{2}+A}\\
&\qquad\qquad-\frac{w\sqrt{(w^{2}-\chi)^{2}+\psi^{2}}}{w^{2}+A}\\
&=\int_{0}^{w}\frac{t^{2}}{\sqrt{(t^{2}-\chi)^{2}+\psi^{2}}}{\mathrm{d}t}\\
&\qquad-\frac{u^{2}v\sqrt{(v^{2}-\chi)^{2}+\psi^{2}}+v^{2}u\sqrt{(u^{2}-\chi)^{2}+\psi^{2}}}{A^{2}-u^{2}v^{2}}\\
\\
&
\qquad\left\{\begin{split}
w&=\frac{Au\sqrt{(v^{2}-\chi)^{2}+\psi^{2}}+Av\sqrt{(u^{2}-\chi)^{2}+\psi^{2}}}{A^{2}-u^{2}v^{2}}\\
A&=\sqrt{\chi^{2}+\psi^{2}}
\end{split}\right.
\end{align*}




  1. \int_{0}^{u}\frac{t^{2}}{\sqrt{(t^{2}-\chi)^{2}+\psi^{2}}}dt+\int_{0}^{v}\frac{t^{2}}{\sqrt{(t^{2}-\chi)^{2}+\psi^{2}}}dt
  2. \int_{0}^{w}\frac{t^{2}}{\sqrt{(t^{2}-\chi)^{2}+\psi^{2}}}dt-\frac{4A(A+\chi)uvw}{(u^{2}+A)(v^{2}+A)(w^{2}+A)}+\frac{u\sqrt{(u^{2}-\chi)^{2}+\psi^{2}}}{u^{2}+A}+\frac{v\sqrt{(v^{2}-\chi)^{2}+\psi^{2}}}{v^{2}+A}-\frac{w\sqrt{(w^{2}-\chi)^{2}+\psi^{2}}}{w^{2}+A}
  3. w=\frac{Au\sqrt{(v^{2}-\chi)^{2}+\psi^{2}}+Av\sqrt{(u^{2}-\chi)^{2}+\psi^{2}}}{A^{2}-u^{2}v^{2}}
  4. A=\sqrt{\chi^{2}+\psi^{2}}
  5. u=x
  6. v=7.36
  7. \chi=2
  8. \psi=4.97
  9. \int_{0}^{w}\frac{t^{2}}{\sqrt{(t^{2}-\chi)^{2}+\psi^{2}}}dt-\frac{u^{2}v\sqrt{(v^{2}-\chi)^{2}+\psi^{2}}+v^{2}u\sqrt{(u^{2}-\chi)^{2}+\psi^{2}}}{A^{2}-u^{2}v^{2}}
  10. g\left(x\right)=-\frac{f\left(\frac{\frac{4A\left(A^{2}-\omega^{4}\right)\sqrt{\left(\omega^{2}-\chi\right)^{2}+\psi^{2}}}{\omega}uvw_{1}}{\left(\left(A+u^{2}\right)\left(A+v^{2}\right)\left(A+w_{1}^{2}\right)\left(A-\omega^{2}\right)^{2}+\left(A-u^{2}\right)\left(A-v^{2}\right)\left(A-w_{1}^{2}\right)\left(A+\omega^{2}\right)^{2}\right)}\right)}{2\omega\sqrt{\left(\omega^{2}-\chi\right)^{2}+\psi^{2}}}+\frac{f\left(\frac{u^{2}\left(\left(\omega^{2}-\chi\right)^{2}+\psi^{2}\right)+\omega^{2}\left(\left(u^{2}-\chi\right)^{2}+\psi^{2}\right)}{2u\omega\sqrt{\left(\left(u^{2}-\chi\right)^{2}+\psi^{2}\right)\left(\left(\omega^{2}-\chi\right)^{2}+\psi^{2}\right)}}\right)}{4\omega\sqrt{\left(\omega^{2}-\chi\right)^{2}+\psi^{2}}}+\frac{f\left(\frac{2v\omega\sqrt{\left(\left(v^{2}-\chi\right)^{2}+\psi^{2}\right)\left(\left(\omega^{2}-\chi\right)^{2}+\psi^{2}\right)}}{v^{2}\left(\left(\omega^{2}-\chi\right)^{2}+\psi^{2}\right)+\omega^{2}\left(\left(v^{2}-\chi\right)^{2}+\psi^{2}\right)}\right)}{4\omega\sqrt{\left(\omega^{2}-\chi\right)^{2}+\psi^{2}}}-\frac{f\left(\frac{2w_{1}\omega\sqrt{\left(\left(w_{1}^{2}-\chi\right)^{2}+\psi^{2}\right)\left(\left(\omega^{2}-\chi\right)^{2}+\psi^{2}\right)}}{w_{1}^{2}\left(\left(\omega^{2}-\chi\right)^{2}+\psi^{2}\right)+\omega^{2}\left(\left(w_{1}^{2}-\chi\right)^{2}+\psi^{2}\right)}\right)}{4\omega\sqrt{\left(\omega^{2}-\chi\right)^{2}+\psi^{2}}}
  11. \int_{u}^{+\infty}\frac{1}{(t^{2}-\omega^{2})\sqrt{(t^{2}-\chi)^{2}+\psi^{2}}}dt+\int_{v}^{+\infty}\frac{1}{(t^{2}-\omega^{2})\sqrt{(t^{2}-\chi)^{2}+\psi^{2}}}dt
  12. \int_{w_{1}}^{+\infty}\frac{1}{(t^{2}-\omega^{2})\sqrt{(t^{2}-\chi)^{2}+\psi^{2}}}dt+g\left(x\right)
  13. \omega=0.8
  14. w_{1}=\frac{v\sqrt{(u^{2}-\chi)^{2}+\psi^{2}}-u\sqrt{(v^{2}-\chi)^{2}+\psi^{2}}}{u^{2}-v^{2}}
  15. f\left(x\right)=\operatorname{arctanh}\left(x^{\operatorname{sgn}\left(1-\left|x\right|\right)}\right)
Copy the Code

459

Threads

952

Posts

9843

Credits

Credits
9843

Show all posts

 Author| 青青子衿 Posted 2025-3-24 21:40
Last edited by 青青子衿 2025-4-1 14:23
\begin{align*}
&\int_{u}^{+\infty}\frac{\mathrm{d}t}{\left(t^{2}-\omega^{2}\right)\sqrt{(t^{2}-\chi)^{2}+\psi^{2}}}

+\int_{v}^{+\infty}\frac{\mathrm{d}t}{\left(t^{2}-\omega^{2}\right)\sqrt{(t^{2}-\chi)^{2}+\psi^{2}}}\\

&\qquad=\int_{w}^{+\infty}\frac{\mathrm{d}t}{\left(t^{2}-\omega^{2}\right)\sqrt{(t^{2}-\chi)^{2}+\psi^{2}}}\\

&\qquad\qquad+\tfrac{1}{4\omega\sqrt{(\omega^{2}-\chi)^{2}+\psi^{2}}}\operatorname{arctanh}\left(\tfrac{2u\omega\sqrt{((\omega^{2}-\chi)^{2}+\psi^{2})((u^{2}-\chi)^{2}+\psi^{2})}}{u^{2}\left((\omega^{2}-\chi)^{2}+\psi^{2}\right)+\omega^{2}\left((u^{2}-\chi)^{2}+\psi^{2}\right)}\right)\\

&\qquad\qquad\qquad+\tfrac{1}{4\omega\sqrt{(\omega^{2}-\chi)^{2}+\psi^{2}}}\operatorname{arctanh}\left(\tfrac{2v\omega\sqrt{((\omega^{2}-\chi)^{2}+\psi^{2})((v^{2}-\chi)^{2}+\psi^{2})}}{v^{2}\left((\omega^{2}-\chi)^{2}+\psi^{2}\right)+\omega^{2}\left((v^{2}-\chi)^{2}+\psi^{2}\right)}\right)\\

&\qquad\qquad-\tfrac{1}{4\omega\sqrt{(\omega^{2}-\chi)^{2}+\psi^{2}}}\operatorname{arctanh}\left(\tfrac{2w\omega\sqrt{((\omega^{2}-\chi)^{2}+\psi^{2})((w^{2}-\chi)^{2}+\psi^{2})}}{w^{2}\left((\omega^{2}-\chi)^{2}+\psi^{2}\right)+\omega^{2}\left((w^{2}-\chi)^{2}+\psi^{2}\right)}\right)\\

&-\tfrac{1}{2\omega\sqrt{(\omega^{2}-\chi)^{2}+\psi^{2}}}\operatorname{arctanh}\left(\tfrac{\frac{4A(A^{2}-\omega^{4})}{\omega}\sqrt{(\omega^{2}-\chi)^{2}+\psi^{2}}uvw}{(A-\omega^{2})^{2}(A+u^{2})(A+v^{2})(A+w^{2})+(A+\omega^{2})^{2}(A-u^{2})(A-v^{2})(A-w^{2})}\right)\\

&\qquad\qquad=\frac{1}{2 \omega  \sqrt{(\omega ^2-\chi )^2+\psi ^2}}
\ln \left(\tfrac{
\begin{vmatrix}
1 & u^2 & u \sqrt{(u^2-\chi)^2+\psi ^2} \\
1 & v^2 & v \sqrt{(v^2-\chi )^2+\psi ^2} \\
1 & \omega ^2 & -\omega  \sqrt{(\omega ^2-\chi)^2+\psi ^2} \\
\end{vmatrix}
}{
\begin{vmatrix}
1 & u^2 & u \sqrt{(u^2-\chi)^2+\psi ^2} \\
1 & v^2 & v \sqrt{(v^2-\chi )^2+\psi ^2} \\
1 & \omega ^2 & \omega  \sqrt{(\omega ^2-\chi)^2+\psi ^2} \\
\end{vmatrix}
}\right)\\


\\
&\qquad\qquad\left\{\begin{split}
w&=\frac{v\sqrt{(u^{2}-\chi)^{2}+\psi^{2}}-u\sqrt{(v^{2}-\chi)^{2}+\psi^{2}}}{u^{2}-v^{2}}\\
A&=\sqrt{\chi^{2}+\psi^{2}}\\
\operatorname{arctanh}(x)&=\operatorname{arctanh}\left(x^{\operatorname{sgn}(1-\left|x\right|)}\right)
\end{split}\right.


\end{align*}



  1. lis3 = {u -> 9, v -> 7, \[Chi] -> 3, \[Psi] -> 2, \[Omega] -> 1};
  2. N[NIntegrate[
  3.    1/((t^2 - \[Omega]^2) Sqrt[(t^2 - \[Chi])^2 + \[Psi]^2]) /.
  4.     lis3, {t, u /. lis3, +Infinity}, WorkingPrecision -> 50]
  5.   + NIntegrate[
  6.    1/((t^2 - \[Omega]^2) Sqrt[(t^2 - \[Chi])^2 + \[Psi]^2]) /.
  7.     lis3, {t, v /. lis3, +Infinity}, WorkingPrecision -> 50]
  8.   - NIntegrate[
  9.    1/((t^2 - \[Omega]^2) Sqrt[(t^2 - \[Chi])^2 + \[Psi]^2]) /.
  10.     lis3, {t, (
  11.      v Sqrt[(u^2 - \[Chi])^2 + \[Psi]^2] -
  12.       u Sqrt[(v^2 - \[Chi])^2 + \[Psi]^2])/(u^2 - v^2) /.
  13.      lis3, +Infinity}, WorkingPrecision -> 50], 40]
  14. N[1/(2 \[Omega] Sqrt[(\[Omega]^2 - \[Chi])^2 + \[Psi]^2]) Log[Det[( {
  15.        {1, u^2, u Sqrt[(u^2 - \[Chi])^2 + \[Psi]^2]},
  16.        {1, v^2, v Sqrt[(v^2 - \[Chi])^2 + \[Psi]^2]},
  17.        {1, \[Omega]^2, -\[Omega] Sqrt[(\[Omega]^2 - \[Chi])^2 + \
  18. \[Psi]^2]}
  19.       } )]/Det[( {
  20.        {1, u^2, u Sqrt[(u^2 - \[Chi])^2 + \[Psi]^2]},
  21.        {1, v^2, v Sqrt[(v^2 - \[Chi])^2 + \[Psi]^2]},
  22.        {1, \[Omega]^2, \[Omega] Sqrt[(\[Omega]^2 - \[Chi])^2 + \
  23. \[Psi]^2]}
  24.       } )]] /. lis3, 40]
  25. AarcTanh[x_] := ArcTanh[x^Sign[1 - Abs[x]]]
  26. N[(1/(4 \[Omega] Sqrt[(\[Omega]^2 - \[Chi])^2 + \[Psi]^2])
  27.          AarcTanh[(
  28.          2 u*\[Omega] Sqrt[((\[Omega]^2 - \[Chi])^2 + \[Psi]^2) ((u^2 \
  29. - \[Chi])^2 + \[Psi]^2)])/(
  30.          u^2 ((\[Omega]^2 - \[Chi])^2 + \[Psi]^2) + \[Omega]^2 ((u^2 \
  31. - \[Chi])^2 + \[Psi]^2))]
  32.        +
  33.        1/(4 \[Omega] Sqrt[(\[Omega]^2 - \[Chi])^2 + \[Psi]^2])
  34.          AarcTanh[(
  35.          2 v*\[Omega] Sqrt[((\[Omega]^2 - \[Chi])^2 + \[Psi]^2) ((v^2 \
  36. - \[Chi])^2 + \[Psi]^2)])/(
  37.          v^2 ((\[Omega]^2 - \[Chi])^2 + \[Psi]^2) + \[Omega]^2 ((v^2 \
  38. - \[Chi])^2 + \[Psi]^2))]
  39.        -
  40.        1/(4 \[Omega] Sqrt[(\[Omega]^2 - \[Chi])^2 + \[Psi]^2])
  41.          AarcTanh[(
  42.          2 w*\[Omega] Sqrt[((\[Omega]^2 - \[Chi])^2 + \[Psi]^2) ((w^2 \
  43. - \[Chi])^2 + \[Psi]^2)])/(
  44.          w^2 ((\[Omega]^2 - \[Chi])^2 + \[Psi]^2) + \[Omega]^2 ((w^2 \
  45. - \[Chi])^2 + \[Psi]^2))]
  46.        -
  47.        1/(2 \[Omega] Sqrt[(\[Omega]^2 - \[Chi])^2 + \[Psi]^2])
  48.          AarcTanh[((
  49.           4 A (A^2 - \[Omega]^4))/\[Omega] Sqrt[(\[Omega]^2 - \
  50. \[Chi])^2 + \[Psi]^2] u*v*
  51.           w)/((A - \[Omega]^2)^2 (A + u^2) (A + v^2) (A +
  52.              w^2) + (A + \[Omega]^2)^2 (A - u^2) (A - v^2) (A -
  53.              w^2))]) /. {
  54.       W -> -((u*V - v*U )/(u - v)) - (U - V )/(u - v) w} /. {
  55.      w -> (
  56.       v Sqrt[(u^2 - \[Chi])^2 + \[Psi]^2] -
  57.        u Sqrt[(v^2 - \[Chi])^2 + \[Psi]^2])/(u^2 - v^2)} /. {
  58.     U -> Sqrt[(u^2 - \[Chi])^2 + \[Psi]^2],
  59.     V -> Sqrt[(v^2 - \[Chi])^2 + \[Psi]^2],
  60.     A -> Sqrt[\[Chi]^2 + \[Psi]^2]} /. lis3, 40]
Copy the Code

  1. points = {{a, 0}, {p, P}, {q, Q}};
  2. poly = InterpolatingPolynomial[points,
  3.     x] - (x - a) ((
  4.       p^2 Q - q^2 P - a (p*Q - q*P))/((a - p) (a - q) (p - q)) - (
  5.        a (P - Q) + (p*Q - q*P))/((a - p) (a - q) (p - q)) x) //
  6.   Factor
  7. points = {{u, U}, {v, V}};
  8. poly = InterpolatingPolynomial[points,
  9.     x] - ((u*V - v*U )/(u - v) + (U - V )/(u - v) x) // Factor
Copy the Code

459

Threads

952

Posts

9843

Credits

Credits
9843

Show all posts

 Author| 青青子衿 Posted 2025-3-28 10:56
Last edited by 青青子衿 2025-4-11 13:08Pseudo-elliptic integrals, units, and torsion
Francesco Pappalardi, Alfred J. van der Poorten
arxiv.org/pdf/math/0403228
  1. N[NIntegrate[1/(
  2.    2 (t - 1) Sqrt[t ((t - 3)^2 + 2^2)]), {t, 5^2, +Infinity},
  3.    WorkingPrecision -> 50]
  4.   + NIntegrate[1/(
  5.    2 (t - 1) Sqrt[t ((t - 3)^2 + 2^2)]), {t, 7^2, +Infinity},
  6.    WorkingPrecision -> 50]
  7.   - NIntegrate[1/(
  8.    2 (t - 1) Sqrt[
  9.     t ((t - 3)^2 + 2^2)]), {t, (1/
  10.       24 (10 Sqrt[530] - 14 Sqrt[122]))^2, +Infinity},
  11.    WorkingPrecision -> 50], 40]
  12. N[1/(4 Sqrt[2])
  13.    Log[((-1721 + 5 Sqrt[61]) (-3443 + 7 Sqrt[265]))/5920632], 40]
  14. N[1/(2 Sqrt[a ((a - 3)^2 + 2^2)]) Log[Det[( {
  15.        {1, u, Sqrt[u ((u - 3)^2 + 2^2)]},
  16.        {1, v, Sqrt[v ((v - 3)^2 + 2^2)]},
  17.        {1, a, -Sqrt[a ((a - 3)^2 + 2^2)]}
  18.       } )]/Det[( {
  19.        {1, u, Sqrt[u ((u - 3)^2 + 2^2)]},
  20.        {1, v, Sqrt[v ((v - 3)^2 + 2^2)]},
  21.        {1, a, Sqrt[a ((a - 3)^2 + 2^2)]}
  22.       } )]] /. {u -> 5^2, v -> 7^2, a -> 1}, 40]
Copy the Code




\begin{gather*}

{\large\int} \frac{s_{3}(x^3+W_{3})+s_{2}(x^2+W_{2})+s_{1}(x+W_{1})}{(x^3+ux^2+vx+w)\sqrt{x^3+Ax+B}}\mathrm{d}x\\
\\
\left\{
\begin{split}
A&=u\mu\\
B&=\frac{u(u^2+18u\mu-27\mu ^2)}{108}\\
v&= -\frac{u (u+6 \mu)}{3}\\
w&=\frac{u(u^2+18u\mu+54 \mu ^2)}{27}\\
W_{1}&=\frac{u}{3}\\
W_{2}&=-\frac{u^2}{9}\\
W_{3}&=-\frac{u(2 u^2+18 u\mu+27 \mu ^2)}{27}\\
\end{split}\right.\\

\end{gather*}






\begin{align*}
x&=\frac{-36bt-144ab+(t-4a)\sqrt{t^{3}-64a^{3}-432b^{2}}}{6(t^{2}+4at+16a^{2})}\\
y&=\frac{36bt+(t+8a)\sqrt{t^{3}-64a^{3}-432b^{2}}}{6(t^{2}+4at+16a^{2})}\\
\mathrm{d}x&=\left(\frac{6bt(8a+t)}{(t^{2}+4at+16a^{2})^{2}}-\frac{(t^{2}-8at-32a^{2})\sqrt{t^{3}-64a^{3}-432b^{2}}}{6(t^{2}+4at+16a^{2})^{2}}\right.\\
&\qquad\qquad\left.+\frac{t^{2}(t-4a)}{4(t^{2}+4at+16a^{2})\sqrt{t^{3}-64a^{3}-432b^{2}}}\right)\mathrm{d}t\\
\dfrac{\mathrm{d}x}{y}&=\left(\frac{t+8a}{2(t^{2}+4at+16a^{2})}+\frac{18bt}{(t^{2}+4at+16a^{2})\sqrt{t^{3}-64a^{3}-432b^{2}}}\right)\mathrm{d}t\\

&=\left(\frac{t+8a}{2(t^{2}+4at+16a^{2})}\right.\\
&\qquad+\left(\tfrac{-1-i\sqrt{3}}{2}\right)\left(\tfrac{1}{\frac{-1+i\sqrt{3}}{2}t-4a}+c_0\right)\frac{\frac{-1+i\sqrt{3}}{2}}{\sqrt{\left({\scriptsize\frac{-1+i\sqrt{3}}{2}}t\right)^{3}-64a^{3}-432b^{2}}}\\
&\qquad\quad\left.-\left(\tfrac{-1+i\sqrt{3}}{2}\right)\left(\tfrac{1}{\frac{-1-i\sqrt{3}}{2}t-4a}+c_0\right)\frac{\frac{-1-i\sqrt{3}}{2}}{\sqrt{\left({\scriptsize\frac{-1-i\sqrt{3}}{2}}t\right)^{3}-64a^{3}-432b^{2}}}\right)\mathrm{d}t\\

\end{align*}




  1. y^3 - (x^3 + a*x + b) /. {
  2.    x -> (-36 b*t - 144 a*b + (t - 4 a) s)/(6 (t^2 + 4 a*t + 16 a^2)),
  3.    y -> (36 b*t + (t + 8 a) s)/(6 (t^2 + 4 a*t + 16 a^2))
  4.    } // Factor
  5. D[(-36 b*t - 144 a*b + (t - 4 a) Sqrt[t^3 - 64 a^3 - 432 b^2])/(
  6.    6 (t^2 + 4 a*t + 16 a^2)), t] - (
  7.    
  8.    (6 b t (8 a + t))/(16 a^2 + 4 a t +
  9.       t^2)^2 + ((32 a^2 + 8 a t - t^2) Sqrt[t^3 - 64 a^3 - 432 b^2])/(
  10.     6 (16 a^2 + 4 a t + t^2)^2) + ((t - 4 a) (3 t^2)/(
  11.      2 Sqrt[t^3 - 64 a^3 - 432 b^2]))/(
  12.     6 (16 a^2 + 4 a t + t^2))) // Factor
  13. ((6 b t (8 a + t))/(16 a^2 + 4 a t +
  14.      t^2)^2 + ((32 a^2 + 8 a t - t^2) Sqrt[t^3 - 64 a^3 - 432 b^2])/(
  15.    6 (16 a^2 + 4 a t + t^2)^2) + ((t - 4 a) (3 t^2)/(
  16.     2 Sqrt[t^3 - 64 a^3 - 432 b^2]))/(6 (16 a^2 + 4 a t + t^2)))/((
  17.   36 b*t + (t + 8 a) Sqrt[t^3 - 64 a^3 - 432 b^2])/(
  18.   6 (t^2 + 4 a*t + 16 a^2))) /. {a -> 1, b -> -1, t -> 10} // N
  19. (36 b*t + (t + 8 a)*s)/(2 (16 a^2 + 4 a t + t^2) s) /.
  20.    s -> Sqrt[t^3 - 64 a^3 - 432 b^2] /. {a -> 1, b -> -1, t -> 10} // N
  21. (18 b*t)/( (t^2 + 4*a*t + 16 a^2) Sqrt[t^3 - 64 a^3 - 432 b^2])
  22. 6 I Sqrt[3]
  23.    b ((-1 - I Sqrt[3])/
  24.      2 (1/((-1 + I Sqrt[3])/2 t - 4 a) + c) ((-1 + I Sqrt[3])/2)/
  25.      Sqrt[((-1 + I Sqrt[3])/2 t)^3 - 64 a^3 - 432 b^2]
  26.     - (-1 + I Sqrt[3])/
  27.      2 (1/((-1 - I Sqrt[3])/2 t - 4 a) + c) ((-1 - I Sqrt[3])/2)/
  28.      Sqrt[((-1 - I Sqrt[3])/2 t)^3 - 64 a^3 -
  29.       432 b^2]) // FullSimplify
Copy the Code

459

Threads

952

Posts

9843

Credits

Credits
9843

Show all posts

 Author| 青青子衿 Posted 2025-4-24 19:23
青青子衿 发表于 2025-3-28 10:56
Pseudo-elliptic integrals, units, and torsion
Francesco Pappalardi, Alfred J. van der Poorten

\begin{gather*}

{\large\int} \frac{s_{3}(x^3+W_{1,3})+s_{2}(x^2+W_{1,2})+s_{1}(x+W_{1,1})}{(x^3+u_1x^2+v_1x+w_1)\sqrt{x^3+Ax+B}}\mathrm{d}x\\
\\
\left\{
\begin{split}
A&=\frac{\chi^2\psi(1+3 \psi+3 \psi^2)}{3}\\
B&=\frac{\chi^3(1-3 \psi^2)(1+6 \psi+18 \psi^2+18 \psi^3+9 \psi^4)}{108} \\
u_1&=\chi\\
v_1&= -\frac{\chi^2 (1+2 \psi +6 \psi ^2+6 \psi ^3)}{3} \\
w_1&=\frac{\chi^{3}(1+6\psi+24\psi^{2}+54\psi^{3}+90\psi^{4}+108\psi^{5}+54\psi^{6})}{27}\\
W_{1,1}&=\frac{\chi}{3}\\
W_{1,2}&=-\frac{\chi^2}{9}\\
W_{1,3}&=-\frac{\chi^{3}(2+6\psi+21\psi^{2}+36\psi^{3}+45\psi^{4}+54\psi^{5}+27\psi^{6})}{27}\\
\end{split}\right.\\

\end{gather*}

\begin{gather*}

{\large\int} \frac{s_{3}(x^3+W_{2,3})+s_{2}(x^2+W_{2,2})+s_{1}(x+W_{2,1})}{(x^3+u_2x^2+v_2x+w_2)\sqrt{x^3+Ax+B}}\mathrm{d}x\\
\\
\left\{
\begin{split}
A&=\frac{\chi^2\psi(1+3 \psi+3 \psi^2)}{3}\\
B&=\frac{\chi^3(1-3 \psi^2)(1+6 \psi+18 \psi^2+18 \psi^3+9 \psi^4)}{108} \\
u_2&=-3 \chi \psi ^2\\
v_2&= -\frac{\chi^{2}\psi(2+6\psi+6\psi^{2}+9\psi^{3})}{3} \\
w_2&=-\frac{\chi^{3}(2+12\psi+30\psi^{2}+54\psi^{3}+72\psi^{4}+54\psi^{5}+27\psi^{6})}{27}\\
W_{2,1}&=-\chi  \psi ^2\\
W_{2,2}&=-\chi ^2 \psi ^4\\
W_{2,3}&=\frac{\chi^{3}(1+6\psi+15\psi^{2}+36\psi^{3}+63\psi^{4}+54\psi^{5}+54\psi^{6})}{27}\\
\end{split}\right.\\

\end{gather*}


459

Threads

952

Posts

9843

Credits

Credits
9843

Show all posts

 Author| 青青子衿 Posted 2025-5-19 05:27
青青子衿 发表于 2025-4-24 19:23
\begin{gather*}

{\large\int} \frac{s_{3}(x^3+W_{1,3})+s_{2}(x^2+W_{1,2})+s_{1}(x+W_{1,1})}{(x^3+u ...

\begin{gather*}
\int\left(\frac{t}{t^{2}+3-2\sqrt{3}}\right)\frac{\mathrm{d}t}{\sqrt{t(t+1)(t-1)}}\\


=k\cdot\left(\int\frac{\mathrm{d}u}{1-u^{2}}-\int\frac{\mathrm{d}v}{1+v^{2}}-6\int\frac{w^{2}}{1-w^{4}}\mathrm{d}w\right)\\

\\
\\
\left\{
\begin{split}
k&=\tfrac{(1+\sqrt{3})\sqrt{6\sqrt{6\sqrt{3}}}\sqrt{1+\sqrt{3}}}{36}\\

u&=\frac{\frac{\sqrt{2\sqrt{6\sqrt{3}}}\sqrt{1+\sqrt{3}}}{2}\left(x-\frac{\sqrt{6\sqrt{3}}+\sqrt{2\sqrt{3}}}{6}\right)}{\sqrt{x(x+1)(x-1)}}\\
v&=\frac{\frac{\sqrt{2\sqrt{6\sqrt{3}}}\sqrt{1+\sqrt{3}}}{2}\left(x+\frac{\sqrt{6\sqrt{3}}+\sqrt{2\sqrt{3}}}{6}\right)}{\sqrt{x(x+1)(x-1)}}\\
w&=\frac{\frac{\sqrt{3\sqrt{6\sqrt{3}}}\sqrt{\sqrt{3}-1}}{3}x}{\sqrt{x(x+1)(x-1)}}
\end{split}
\right.

\end{gather*}

Mobile version|Discuz Math Forum

2025-6-4 17:02 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit