Forgot password
 Register account
View 366|Reply 9

[不等式] 求证一个$A,G,M_n$的不等式

[Copy link]

423

Threads

909

Posts

0

Reputation

Show all posts

lemondian posted 2025-4-8 17:33 |Read mode
Last edited by hbghlyj 2025-4-10 20:52设$a,b>0,n\inN^*,G=\sqrt{ab},A=\dfrac{a+b}{2},M_n=\sqrt[n]{\dfrac{a^n+b^n}{2}}$,求证:$\dfrac{n-1}{n}G+\dfrac{1}{n}M_n\leqslant A$.

51

Threads

148

Posts

2

Reputation

Show all posts

1+1=? posted 2025-4-10 20:52 from mobile
G和M的海伦平均小于等于A,用函数的凹凸性证明

Comment

麻烦写下详细过程吧,谢谢!  posted 2025-4-10 21:38
1+1=2吗?

3211

Threads

7832

Posts

52

Reputation

Show all posts

hbghlyj posted 2025-4-11 16:10
Last edited by hbghlyj 2025-4-13 13:28files.ele-math.com/articles/mia-04-35.pdf
$a,b$的广义海伦平均
$$H_w(a, b)=\frac{w}{w+2} G(a, b)+\frac{2}{w+2} A(a, b)$$
THEOREM 1. Let $w$ be given.
  • in case of $w \in(0,2]$: the optimum values $\alpha$ and $\beta$ such that
    \[
    M_\alpha(a, b) \leqslant H_w(a, b) \leqslant M_\beta(a, b)
    \]
    holds true in general, are $\alpha_{\max }=\frac{\ln 2}{\ln (w+2)}$ and $\beta_{\min }=\frac{2}{w+2}$
  • in case of $w \in(-\infty,0)\cup[2, \infty)$: the optimum values $\alpha$ and $\beta$ such that
    \[
    M_\alpha(a, b) \leqslant H_w(a, b) \leqslant M_\beta(a, b)
    \]
    holds true in general, are $\alpha_{\max }=\frac{2}{w+2}$ and $\beta_{\min }=\frac{\ln 2}{\ln (w+2)}$

Comment

又是全外文的!
话说1#的有证明过程吗?  posted 2025-4-11 16:21

51

Threads

148

Posts

2

Reputation

Show all posts

1+1=? posted 2025-4-11 23:55 from mobile
Last edited by hbghlyj 2025-4-12 00:13原题移项得 $M_n \leqslant(1-n) G_n+n \cdot A_n$
令$1-n=\frac{w}{w +2}$
则$\Leftrightarrow M_\alpha(a, b) \leqslant H_w(a, b) $

4

Threads

137

Posts

12

Reputation

Show all posts

Aluminiumor posted 2025-4-12 23:36
等价于证明
$$f(x)=\frac{x+1}{2}-\frac1n\left(\frac{x^n+1}{2}\right)^{\frac1n}-\frac{n-1}{n}\sqrt{x}\geq0$$
求导,得
$$f'(x)=\frac{1}{2n}\left[n-x^{n-1}\left(\frac{x^n+1}{2}\right)^{\frac1n-1}-\frac{n-1}{\sqrt{x}}\right]$$
$$f''(x)=\frac{n-1}{4n}\cdot\frac{1}{x\sqrt{x}}\left(\frac{x^n+1}{2}\right)^{\frac1n-2}\left[\left(\frac{x^n+1}{2}\right)^{2-\frac1n}-x^{n-\frac12}\right]$$

$$\left(\frac{x^n+1}{2}\right)^{2-\frac1n}\geq x^{n-\frac12}\Longleftrightarrow\frac{x^n+1}{2}\geq x^{\frac{2n-1}{2}\cdot\frac{n}{2n-1}}=x^{\frac{n}{2}}$$
显然成立.
故 $f''(x)\geq0$ 恒成立.
又 $f'(1)=0$,则 $f(x)\geq f(1)=0$,得证.

Comment

N!  posted 2025-4-13 11:49
Wir müssen wissen, wir werden wissen.

3211

Threads

7832

Posts

52

Reputation

Show all posts

hbghlyj posted 2025-4-13 04:15
为确定不等式\[
\frac{x + 1}{2} - k \left( \frac{x^n + 1}{2} \right)^{\frac{1}{n}} - (1 - k) \sqrt{x} \geq 0 \quad \forall x > 0
\]中常数 \( k = \frac{1}{n} \) 是否最佳,我们计算一般 \( k \) 情况下的二阶导数 \( f''(x) \):
\[
f(x) = \frac{x + 1}{2} - k \left( \frac{x^n + 1}{2} \right)^{\frac{1}{n}} - (1 - k) \sqrt{x}.
\]
\[
f''(x) = -\frac{k(n - 1)}{4} x^{n - 2} \left( \frac{x^n + 1}{2} \right)^{\frac{1}{n} - 2} + \frac{(1 - k)}{4} x^{-3/2}.
\]
为了 \( f''(x) \geq 0 \) 需要满足
\[
\frac{1 - k}{k(n - 1)} \geq \frac{x^{n - \frac{1}{2}}}{\left( \frac{x^n + 1}{2} \right)^{2 - \frac{1}{n}}}.
\]
考虑不等式 \( \left( \frac{x^n + 1}{2} \right)^{2 - \frac{1}{n}} \geq x^{n - \frac{1}{2}} \),我们得到 \( \frac{1 - k}{k(n - 1)} \geq 1 \),从而有 \( k \leq \frac{1}{n} \)。

因此,常数 \( k = \frac{1}{n} \) 确实是最佳的。

51

Threads

148

Posts

2

Reputation

Show all posts

1+1=? posted 2025-4-13 13:07 from mobile
hbghlyj 发表于 2025-4-13 12:09
是啊,我也疑惑问一下@lxz2336831534
根据6#的证明,说明w≤0的情况下,3#的不等式不等号反号之后成立。
1+1=2吗?

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-20 05:50 GMT+8

Powered by Discuz!

Processed in 0.020915 seconds, 41 queries