|
hbghlyj
Posted at 2025-4-11 16:10:47
Last edited by hbghlyj at 7 days agofiles.ele-math.com/articles/mia-04-35.pdf
$a,b$的广义海伦平均
$$H_w(a, b)=\frac{w}{w+2} G(a, b)+\frac{2}{w+2} A(a, b)$$
THEOREM 1. Let $w$ be given.
- in case of $w \in(0,2]$: the optimum values $\alpha$ and $\beta$ such that
\[
M_\alpha(a, b) \leqslant H_w(a, b) \leqslant M_\beta(a, b)
\]
holds true in general, are $\alpha_{\max }=\frac{\ln 2}{\ln (w+2)}$ and $\beta_{\min }=\frac{2}{w+2}$ - in case of $w \in(-\infty,0)\cup[2, \infty)$: the optimum values $\alpha$ and $\beta$ such that
\[
M_\alpha(a, b) \leqslant H_w(a, b) \leqslant M_\beta(a, b)
\]
holds true in general, are $\alpha_{\max }=\frac{2}{w+2}$ and $\beta_{\min }=\frac{\ln 2}{\ln (w+2)}$
|
|