Forgot password?
 Register account
View 646|Reply 7

[几何] 圆锥曲线反演后经过圆环点

[Copy link]

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

hbghlyj Posted 2025-4-24 09:38 |Read mode
Last edited by hbghlyj 2025-4-26 06:35圆锥曲线反演后一般不是圆锥曲线,请问如何判断一个曲线是否为某个圆锥曲线的反演?
en.wikipedia.org/wiki/Inverse_curve#Conics_wi … _center_of_inversion

32

Threads

102

Posts

846

Credits

Credits
846

Show all posts

1+1=? Posted 2025-4-24 11:07 From mobile phone
反演保角大小不变

32

Threads

102

Posts

846

Credits

Credits
846

Show all posts

1+1=? Posted 2025-4-26 11:54 From mobile phone
我觉得圆环点是反演变换的不动点,如果圆锥曲线反演后经过圆环点,则圆锥曲线也经过圆环点,只能是圆

32

Threads

102

Posts

846

Credits

Credits
846

Show all posts

1+1=? Posted 2025-4-26 17:46 From mobile phone
圆环点是复平面的元素,研究反演变换后圆锥曲线过不过圆环点的问题,可以先研究一下复平面的反演变换

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

 Author| hbghlyj Posted 2025-4-26 19:47
代入 $(\frac x{x^2+y^2},\frac y{x^2+y^2})$ 后,要去分母就需要乘以 $x^2+y^2$ 的幂,所得多项式最高次项可以被 $x^2+y^2$ 整除,因此任何多项式方程反演变换后的多项式方程都会通过圆环点

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

 Author| hbghlyj Posted 2025-4-26 19:53
任何多项式方程反演变换后的多项式方程都会通过圆环点
消分母时引入因子$x^2+y^2$。代换后曲线方程的分母为$x^2+y^2$,所以消分母时需要乘以$x^2+y^2$的幂

32

Threads

102

Posts

846

Credits

Credits
846

Show all posts

1+1=? Posted 2025-4-26 23:17 From mobile phone
Last edited by hbghlyj 2025-4-26 23:20
hbghlyj 发表于 2025-4-26 20:02
例如,$y^2=x$ 代换 $(\frac x{x^2+y^2},\frac y{x^2+y^2})$ 得$(\frac{y}{x^2+y^2})^2=\frac{x}{x^2+y^2}$,消去分母得到方程$x^3 + x y^2 = y^2$ 过圆环点
懂了,反演之后代入圆点,分子分母都为\begin{aligned} & f(x, y)=0 \\ \rightarrow & f\left(\frac{x}{x^2+y^2}, \frac{y}{x^2+y^2}\right)=0 \\ \rightarrow & f\left(\frac{x z}{x^2+y^2}, \frac{y z}{x^2+y^2}\right)=0 \\ \rightarrow & f\left(\frac{0}{0}, \frac{0}{0}\right)=0\end{aligned}

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

 Author| hbghlyj Posted 2025-4-26 23:21
反过来,如何证明任何有理圆三次曲线有理双圆四次曲线都是二次曲线的反演?
即它必然存在一个实奇点,以该点为反演中心,反演出的曲线必定是二次曲线

Mobile version|Discuz Math Forum

2025-5-31 10:48 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit