Last edited by Aluminiumor 2025-5-11 00:14把你的方法写成嵌套求和就是这样(并没有什么用):
$$\sum_{i=1}^4\sum_{j=i}^4\sum_{k=j}^4\sum_{w=k}^4\sum_{i'=0}^{j-1}\sum_{j'=i'}^{k-1}\sum_{k'=j'}^{w-1}\sum_{w=k'}^{4}+\sum_{j=1}^4\sum_{k=j}^4\sum_{w=k}^4\sum_{i'=0}^{j-1}\sum_{j'=i'}^{k-1}\sum_{k'=j'}^{w-1}\sum_{w=k'}^{4}=1750$$
(前者为 $a_1\geq1$,后者为 $a_1=0$)
- Sum[1, {i, 1, 4}, {j, i, 4}, {k, j, 4}, {w, k, 4}, {i', 0, j - 1}, {j',i', k - 1}, {k', j', w - 1}, {w', k', 4}] + Sum[1, {j, 1, 4}, {k, j, 4}, {w, k, 4}, {i', 0, j - 1}, {j', i', k - 1}, {k', j', w - 1}, {w', k', 4}]
Copy the Code
@hbghlyj 别光点赞,想下有啥办法呗,我搞不定…… |