Forgot password?
 Register account
View 6839|Reply 5

[函数] 求三角的三次方值

[Copy link]

413

Threads

905

Posts

110K

Credits

Credits
10989

Show all posts

lemondian Posted 2025-5-19 08:44 |Read mode
Last edited by lemondian 2025-5-19 15:48$ \sin^320\du+ \sin^340\du- \sin^380\du$

4

Threads

139

Posts

2198

Credits

Credits
2198

Show all posts

Aluminiumor Posted 2025-5-19 09:47
利用 $\sin^3\theta=(3\sin\theta-\sin3\theta)/4$
$$
\begin{align*}
\text{原式}&=\frac34\left(\sin\frac\pi9+\sin\frac{2\pi}{9}-\sin\frac{4\pi}{9}\right)-\frac14\left(\sin\frac\pi3+\sin\frac{2\pi}{3}-\sin\frac{4\pi}{3}\right)\\
&=\frac34\left(\sin\frac\pi9+\sin\frac{2\pi}{9}-\sin\frac{4\pi}{9}\right)-\frac{3\sqrt{3}}{8}\\
&=\frac34\left(\sin\frac\pi9-2\cos\frac{3\pi}{9}\sin\frac\pi9\right)-\frac{3\sqrt{3}}{8}\\
&=-\frac{3\sqrt{3}}{8}
\end{align*}
$$

PS:度数可以用 \du 或 ^\circ 来打.
Wir müssen wissen, wir werden wissen.

4

Threads

139

Posts

2198

Credits

Credits
2198

Show all posts

Aluminiumor Posted 2025-5-19 12:31
熟知
$$\sin\theta\sin\left(\frac\pi3-\theta\right)\sin\left(\frac\pi3+\theta\right)=\frac14\sin3\theta$$
$a^3+b^3-c^3=-3abc+(a+b-c)(a^2+b^2+c^2-ab+bc+ca)$
那么
$$
\begin{align*}
&\sin^3\frac{\pi}{9}+\sin^3\frac{2\pi}{9}-\sin^3\frac{4\pi}{9}\\
=&-3\sin\frac\pi9\sin\frac{2\pi}{9}\sin\frac{4\pi}{9}\\
=&-\frac34\sin\frac{\pi}{3}\\
=&-\frac{3\sqrt{3}}{8}
\end{align*}
$$
Wir müssen wissen, wir werden wissen.

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2025-5-19 14:46
Aluminiumor 发表于 2025-5-19 09:47
...
PS:度数可以用 \du 或 ^\circ 来打.
楼主一直都是用 0 次方打度,说不听的:
forum.php?mod=viewthread&tid=6271
forum.php?mod=viewthread&tid=12216
……
下次我就直接回答 `\sin^320^0+ \sin^340^0- \sin^380^0=\sin^31+ \sin^31- \sin^31=\sin^31`

4

Threads

139

Posts

2198

Credits

Credits
2198

Show all posts

Aluminiumor Posted 2025-5-19 15:24
kuing 发表于 2025-5-19 14:46
楼主一直都是用 0 次方打度,说不听的:
forum.php?mod=viewthread&tid=6271
forum.php?mod=viewthread&ti ...
至少这次用的是 $\sin$ 而不是 $sin$

Comment

😆  Posted 2025-5-19 15:27
Wir müssen wissen, wir werden wissen.

Mobile version|Discuz Math Forum

2025-5-31 10:47 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit