|
Author |
青青子衿
Posted 2025-6-1 10:21
Last edited by 青青子衿 2025-6-1 10:39\begin{gather*}
\left\{\begin{split}
p&=3x^{4}-2(3+\sqrt{3})x^{2}+5+3\sqrt{3}\\
q&=x(3x^{2}+\sqrt{3})\\
r&=3x^{2}+3+2\sqrt{3}\\
s&=3x\\
y&=((x^{2}-1)(x^{2}-\tfrac{3+2\sqrt{3}}{3}))^{1/4}
\end{split}\right.\\
\\
97+56\sqrt{3}=\prod_{k=1}^{4}(p+i^{k}qy+i^{2k}ry^2+i^{3k}sy^3)
\end{gather*}
- p=3x^{4}-2(3+\sqrt{3})x^{2}+5+3\sqrt{3}
- q=x(3x^{2}+\sqrt{3})
- r=3x^{2}+3+2\sqrt{3}
- s=3x
- \chi=((x^{2}-1)(x^{2}-\frac{3+2\sqrt{3}}{3}))^{1/4}
- h=\chi^{4}
- \frac{\left(p^{2}+hr^{2}-2hqs\right)^{2}-h\left(2pr-hs^{2}-q^{2}\right)^{2}}{97+56\sqrt{3}}
Copy the Code |
|