Forgot password
 Register account
View 205|Reply 0

[几何] 曲线的绕数

[Copy link]

3222

Threads

7841

Posts

52

Reputation

Show all posts

hbghlyj posted 2025-6-1 22:38 |Read mode
计算曲线 $4z^4+2z^2+1,z=e^{it},t\in[0,2\pi)$ 关于原点 $0$ 的绕数?

与正实轴相交\begin{cases}4\cos(4t) + 2\cos(2t) + 1>0\\4\sin(4t) + 2\sin(2t)=0\\\end{cases}有4个根\begin{align*}
&t=0\\
&t=\frac{\pi}{2}\\
&t=\pi\\
&t=\frac{3 \pi}{2}\\
\end{align*}由Rouché's theorem,$|4z^4| = 4>3≥|2z^2+1|$,由argument principle,绕数为4

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-21 21:36 GMT+8

Powered by Discuz!

Processed in 0.017334 seconds, 26 queries