Forgot password?
 Create new account
View 1196|Reply 1

一个关于导数的证明题

[Copy link]

462

Threads

969

Posts

9934

Credits

Credits
9934

Show all posts

青青子衿 Posted at 2013-12-13 20:49:29 |Read mode
已知连续函数$f(x)$,在区间$[a,b]$上$f’(x)>0,f’'(x)>0,c>b.$
若$f(c)<f(b)$,则在区间$[b,c]$上存在实数$x_1,x_2,f'(x_1)=0,f''(x_2)=0,x_1>x_2$ [吓]

25

Threads

1020

Posts

110K

Credits

Credits
12672

Show all posts

战巡 Posted at 2013-12-14 09:51:56
回复 1# 青青子衿


得加上二阶导数连续这个条件......
$f'(x)>0$,有$f(b)>f(a)$
当$f(a)\le f(c)$时,根据介值定理可知在$[a,b]$上存在一点$x_0$使得$f(x_0)=f(c)$
再由罗尔定理可知区间$(x_0,c)$上存在一点$x_1$使得$f'(x_1)=0$,又因为$x\in (x_0,b]$时$f'(x)>0$,可知$x_1\in (b,c)$
当$f(a)>f(c)$时同理可证

$f''(x)>0$,有$f'(b)>f'(a)>0$,然后只要把$f'(x)$视为上面的$f(x)$,就可以类似上面证出存在$x_2\in (b,x_1)$使得$f''(x_2)=0$

手机版Mobile version|Leisure Math Forum

2025-4-20 22:11 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list