Forgot password?
 Create new account
View 1305|Reply 7

N维单形的体积

[Copy link]

462

Threads

969

Posts

9934

Credits

Credits
9934

Show all posts

青青子衿 Posted at 2014-1-19 12:57:48 |Read mode
Last edited by hbghlyj at 2025-3-24 02:57:52七,$n$ 维单形不等式
$\mathbb  R^n$ 中子集 $E$ 的任两点连线仍在 $E$ 中,称 $E$ 为凸体,包含 $R^*$ 中 $n_{-}$点 $A_1, \cdots, A_{n+1}$ 的最小凸体,称为由 $\left\{A_1, \cdots, A_{n+1}\right\}$ 张成的 $n$ 维单形 $n$-simplex $\sum(A)$ .若 $A_1$ 的坐标为 $\left(x_{i 1}, \cdots, x_k\right)(1 \leqslant k \leqslant n+1)$ ,则 $\sum(A)$ 的体积 $V(A)$为
\[
V(A)=\frac{1}{n!}\left|\begin{array}{ccccc}
x_{11} & x_{12} & \cdots & x_{12} & 1 \\
x_{11} & x_{22} & \cdots & x_{2 n} & 1 \\
\cdots & & & & \\
x_{k+1,1} & x_{n+1,2} & \cdots & x_{n+1, *}
\end{array}\right|
\]
当 $n \neq 0$ 时,$n$ 维单形有两个定向,用頂点的顺序给出.注意彼此相差一个偶排列的利,序代表同一个定向.
怎么证明??

7

Threads

53

Posts

398

Credits

Credits
398

Show all posts

icesheep Posted at 2014-1-20 10:16:27
标准单纯形+仿射变换

3147

Threads

8493

Posts

610K

Credits

Credits
66163
QQ

Show all posts

hbghlyj Posted at 2023-2-25 11:17:08
Topology
Definition 4.2. The standard $n$-simplex[标准单纯形] is the set
$$
\Delta^n=\left\{\left(x_1, \ldots, x_{n+1}\right) \in \mathbb{R}^{n+1}: x_i \geq 0 \forall i \text { and } \sum_i x_i=1\right\} .
$$
The non-negative integer $n$ is the dimension of this simplex. Its vertices, denoted $V\left(\Delta^n\right)$, are those points $\left(x_1, \ldots, x_{n+1}\right)$ in $\Delta^n$ where $x_i=1$ for some $i$ (and hence $x_j=0$ for all $j \neq i$ ). For each non-empty subset $A$ of $\{1, \ldots, n+1\}$ there is a corresponding face of $\Delta^n$, which is
$$
\left\{\left(x_1, \ldots, x_{n+1}\right) \in \Delta^n: x_i=0 \forall i \notin A\right\} .
$$
Note that $\Delta^n$ is a face of itself (setting $A=\{1, \ldots, n+1\}$ ). The inside of $\Delta^n$ is
$$
\operatorname{inside}\left(\Delta^n\right)=\left\{\left(x_1, \ldots, x_{n+1}\right) \in \Delta^n: x_i>0 \forall i\right\}
$$
Note that the inside of $\Delta^0$ is $\Delta^0$.

$\Delta^0$$\Delta^1$$\Delta^2$$\Delta^3$


3147

Threads

8493

Posts

610K

Credits

Credits
66163
QQ

Show all posts

hbghlyj Posted at 2023-2-25 17:37:41

外接球/棱中点/面重心/内切球半径,体积,表面积

Last edited by hbghlyj at 2025-3-24 02:59:17\begin{array}{|l|l|}
\hline \text { circumradius } & \sqrt{\frac{n}{2 n+2}} s \\
\hline \text { edge midradius } & \frac{1}{2} \sqrt{\frac{n-1}{n+1}} s \approx 0.5 \sqrt{\frac{n-1}{n+1}} s \\
\hline \text { face midradius } & \frac{\sqrt{\frac{n-2}{n+1}} s}{\sqrt{6}} \approx 0.408248 \sqrt{\frac{n-2}{n+1}} s \\
\hline \text { inradius } & \sqrt{\frac{1}{2 n^2+2 n}} s \\
\hline \text { content } & \frac{\sqrt{2^{-n}(n+1)} s^n}{n!} \\
\hline \text { hyper-surface area } & \frac{\sqrt{2^{1-n} n}(n+1) s^{n-1}}{(n-1)!} \\
\hline
\end{array}
(assuming embedding dimension $n$ and edge lengths $s$)

3147

Threads

8493

Posts

610K

Credits

Credits
66163
QQ

Show all posts

hbghlyj Posted at 2023-2-25 18:27:51
hbghlyj 发表于 2023-2-25 10:21
$p_i\in\Bbb R^n(i=1,\cdots,n+1)$ are affinely independent
对应于1#的行列式 $\left|\begin{array}{ccccc}x_{11} & x_{12} & \cdots & x_{1 n} & 1 \\ x_{21} & x_{22} & \cdots & x_{2 n} & 1 \\ \cdots &\cdots&\cdots&\cdots&\cdots\\ x_{n+1,1} & x_{n+1,2} & \cdots & x_{n+1, n} & 1\end{array}\right|\ne0$

3147

Threads

8493

Posts

610K

Credits

Credits
66163
QQ

Show all posts

hbghlyj Posted at 2023-2-25 20:13:00
Asymptote画一个正四面体棱切球

83

Threads

51

Posts

763

Credits

Credits
763

Show all posts

lihpb Posted at 2024-9-7 16:53:38
1楼是什么书

462

Threads

969

Posts

9934

Credits

Credits
9934

Show all posts

 Author| 青青子衿 Posted at 2024-10-30 16:44:59
“常用不等式”  匡继昌

手机版Mobile version|Leisure Math Forum

2025-4-20 22:28 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list