|
Erdös-Mordell inequality and beyond
Zhiqin Lu
The Math Club
University of California, Irvine
November 28, 2007
...
slide 34
The key observation
We let $\vec{A}, \vec{B}, \vec{C}$ be vectors in $R^3$ with length $a, b, c$, respectively. Assume that the angle between $\vec{A}, \vec{B}, \vec{C}$ are $\pi / 2+\alpha / 2, \pi / 2+\beta / 2, \pi / 2+\gamma / 2$, respectivley. Then we have
\[
\left(|\vec{A}|^2+|\vec{B}|^2+|\vec{C}|^2\right)^2 \geq 4\left(|\vec{A} \times \vec{B}|^2+|\vec{B} \times \vec{C}|^2+|\vec{C} \times \vec{A}|^2\right)
\]
For two matrices, we have $AB\ne BA$. Thus we define the commutator of the matrices as$$[A, B] = AB - BA$$
which measures the non-commutativity of the matrices.
Using the notion of commutator, we have the following result
Theorem
Let $A, B, C$ be $3 \times 3$ skew-symmetric matrices with zero diagonal parts. Then we have
$$\left(\|A\|^2+\|B\|^2+\|C\|^2\right)^2 \geq 8\left(\|[A, B]\|^2+\|[B, C]\|^2+\|[C, A]\|^2\right)$$
The above inequality implies the Erdös-Mordell inequality.
Conjecture (Normal scalar curvature conjecture)
Let $A_1, \cdots, A_m$ be $n \times n$ symmetric matrices. Then we have
\[
\left(\sum\left\|A_i\right\|^2\right)^2 \geq 2 \sum_{i<j}\left\|\left[A_i, A_j\right]\right\|^2 .
\]
Conjecture (Böttcher-Wenzel Conjecture)
Let $A, B$ be two $n \times n$ matrices. Then
\[
2\|[A, B]\|^2 \leq\left(\|A\|^2+\|B\|^2\right)^2 .
\]
In summer of 2007, I proved both conjectures.
I made the following conjecture:
Conjecture (Zhiqin Lu)
Let $A, B$ be the bounded trace class operators in a separable Hilbert space. Then we have
\[
2\|[A, B]\|^2 \leq\left(\|A\|^2+\|B\|^2\right)^2,
\]
where the normal is defined as
\[
\|A\|=\sqrt{\operatorname{Tr}\left(A^* A\right)} .
\] |
|