|
假设某个$n_0$有$S_{n_0},S_{n_0+1},S_{n_0+2}$成等比,公比为q.
因为$\frac{S_n}{n}=a_1+\frac{(n-1)d}{2}$,$a_1,d$分别是首项和公差.
即数列{$\frac{S_n}{n}$}是等差数列.
因此有\[\frac{2S_{n_0+1}}{n_0+1}=\frac{S_{n_0}}{n_0}+\frac{S_{n_0+2}}{n_0+2}\]
由$S_{n_0+1}=qS_{n_0},S_{n_0+2}=q^2S_{n_0}$
\[\frac{2q}{n_0+1}=\frac{1}{n_0}+\frac{q^2}{n_0+2}\]
以上看作q的一元二次方程,判别式$Δ=\frac{4}{(n_0+1)^2}-\frac{4}{n_0(n_0+2)}\le 0 $无解.即原命题成立. |
|