Forgot password?
 Create new account
Author: realnumber

[几何] 空间曲线

[Copy link]

61

Threads

980

Posts

110K

Credits

Credits
10117

Show all posts

乌贼 Posted at 2014-4-7 01:38:43
还是你快

61

Threads

980

Posts

110K

Credits

Credits
10117

Show all posts

乌贼 Posted at 2014-4-7 01:41:32
回复 20# 乌贼
能用代数证明该结论吗?

701

Threads

110K

Posts

910K

Credits

Credits
94177
QQ

Show all posts

kuing Posted at 2014-4-7 01:45:36
回复 22# 乌贼

用4#的坐标来证就行了

PS、你现在理解5#了吗?
PS2、补了一个动态图在28#

61

Threads

980

Posts

110K

Credits

Credits
10117

Show all posts

乌贼 Posted at 2014-4-7 01:48:11
回复 23# kuing
20楼图出来了,说明明白5楼

0

Threads

1

Posts

5

Credits

Credits
5

Show all posts

大Q Posted at 2014-4-12 16:30:43
高手.佩服!

2

Threads

465

Posts

6357

Credits

Credits
6357
QQ

Show all posts

爪机专用 Posted at 2014-4-14 04:22:43
回复 25# 大Q

welcome
I am majia of kuing

462

Threads

969

Posts

9934

Credits

Credits
9934

Show all posts

青青子衿 Posted at 2014-5-10 11:33:42
Last edited by 青青子衿 at 2017-2-14 17:06:00回复 13# kuing
\[\begin{cases}x=\cos\theta\\ y=sin\theta\\z=sin\theta \end{cases}\]
这是空间曲线。
(两个圆柱面:\(x^2+y^2=1\)和 \(x^2+z^2=1\)的截交线)
那么,如何证明某曲线在平面内呢?
QQ图片20140510111538.jpg

701

Threads

110K

Posts

910K

Credits

Credits
94177
QQ

Show all posts

kuing Posted at 2014-5-10 12:12:00
回复 27# 青青子衿

4#

462

Threads

969

Posts

9934

Credits

Credits
9934

Show all posts

青青子衿 Posted at 2014-5-10 12:42:22
回复 28# kuing
我知道了,$A_1$的轨迹不恒在一个平面上
但是其他的曲线也得要用反证法证明吗?
有没有什么判定定理之类的呢?谢谢!

425

Threads

1554

Posts

110K

Credits

Credits
11765

Show all posts

 Author| realnumber Posted at 2014-5-13 22:16:22
远超本来要提供的答案~~~

701

Threads

110K

Posts

910K

Credits

Credits
94177
QQ

Show all posts

kuing Posted at 2014-5-13 22:17:19
回复 30# realnumber

也说说看啊

425

Threads

1554

Posts

110K

Credits

Credits
11765

Show all posts

 Author| realnumber Posted at 2014-5-14 07:55:47
真没了.本来是说圆柱和球面交线,再反证法说明下,前面都有了.圆锥都没注意到,空间曲线更不会画....

462

Threads

969

Posts

9934

Credits

Credits
9934

Show all posts

青青子衿 Posted at 2014-6-17 20:16:37
Last edited by 青青子衿 at 2017-2-14 19:09:00回复 1# realnumber
维维安尼曲线(Viviani's curve)
en.wikipedia.org/wiki/Viviani%27s_curve
\begin{cases}
\displaystyle x=R\cos^2\theta\\
\displaystyle y=R\cos\theta\sin\theta\\
\displaystyle z=R\sin\theta
\end{cases}

\[\begin{cases}
\displaystyle x=a+a\cos t\\
\displaystyle y=a\sin t\\
\displaystyle z=2a\sin\frac{t}{2}
\end{cases}
\Longleftrightarrow
\begin{cases}
\displaystyle x=\frac{R}{2}+\frac{R}{2}\cos2\theta\\
\displaystyle y=\frac{R}{2}\sin2\theta\\
\displaystyle z=R\sin\theta
\end{cases}\]
其中\(2a=R\)

61

Threads

980

Posts

110K

Credits

Credits
10117

Show all posts

乌贼 Posted at 2017-6-29 13:59:29
两圆锥曲面相截又是什么曲线?

701

Threads

110K

Posts

910K

Credits

Credits
94177
QQ

Show all posts

kuing Posted at 2017-10-22 14:47:45
两圆锥曲面相截又是什么曲线?
乌贼 发表于 2017-6-29 13:59

闲来无事,画一个:
QQ截图20171022144702.png
代码存档:
  1. zui1 = x^2 + y^2 - (z + 1)^2/4;
  2. zui2 = y^2 + z^2 - (x + 1.1)^2/4;
  3. {ContourPlot3D[{zui1 == 0, zui2 == 0}, {x, -2, 2}, {y, -2, 2}, {z, -2,
  4.     2}, PlotPoints -> 50, Mesh -> None, ViewPoint -> {-2, -4, -2},
  5.   ImageSize -> Medium],
  6. ContourPlot3D[zui1 == 0, {x, -2, 2}, {y, -2, 2}, {z, -2, 2},
  7.   PlotPoints -> 50, Mesh -> {{0}, {0}, {0}},
  8.   MeshFunctions -> Function[{x, y, z}, zui2],
  9.   MeshStyle -> {Thickness[0.01], Red}, ViewPoint -> {-2, -4, -2},
  10.   ImageSize -> Medium]}
Copy the Code

手机版Mobile version|Leisure Math Forum

2025-4-20 22:25 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list