Forgot password?
 Create new account
View 2357|Reply 14

平面上的有限个点,任三点共线,则这些点同在一条直线上

[Copy link]

801

Threads

4888

Posts

310K

Credits

Credits
36170

Show all posts

isee Posted at 2014-4-2 11:14:01 |Read mode
平面上的有限个点,如果具有这样的性质:过这些点中任意两个点的直线上都有这些点中的第三个点,那么这些点一定在同一条直线上。

87

Threads

2383

Posts

110K

Credits

Credits
13325

Show all posts

其妙 Posted at 2014-4-2 12:54:44
数学归纳法可以不?

801

Threads

4888

Posts

310K

Credits

Credits
36170

Show all posts

 Author| isee Posted at 2014-4-2 21:22:09
回复 2# 其妙

秀秀?

425

Threads

1554

Posts

110K

Credits

Credits
11765

Show all posts

realnumber Posted at 2014-4-2 21:56:27
11111.GIF
这样可不可以:
假设这些点不在一直线上,那么用线段连接所有的点,总可以围成一个凸多边形(多边形的外面没有点),且每条边上至少三点(包括两顶点),
选取一个顶点A,其它所有点与A相连,那么如图,射线间没有点.如图,选取凸多边形连续的三顶点ABC,在边AB,BC上最靠近B的点记为$A_3$,N,
连接直线$A_3N$.因为凸多边形外无点,A出发的射线间无点,所以直线$A_3N$只有2个点,矛盾.

425

Threads

1554

Posts

110K

Credits

Credits
11765

Show all posts

realnumber Posted at 2014-4-2 22:03:11
Last edited by realnumber at 2014-4-2 22:42:00有漏洞,继续改进,AB,AN间也许还有射线.
越想越复杂

2

Threads

52

Posts

337

Credits

Credits
337

Show all posts

007 Posted at 2014-4-3 09:02:02
这样子可以吗
(1)$n=3$,显然成立
(2)假设$n=k(≥3)$成立,
则$n=k+1$时,设这些点为$A$,$B$,其余$k-1(≥2)$个点。
由归纳假设知$A$与其余$k-1(≥2)$个点共线于$l_1$,$B$与其余$k-1(≥2)$个点共线于$l_2$,
从而$l_1$与$l_2$至少有$k-1(≥2)$个公共点,于是$l_1$与$l_2$重合。
……
007
123

425

Threads

1554

Posts

110K

Credits

Credits
11765

Show all posts

realnumber Posted at 2014-4-3 11:40:10
回复 6# 007

你得先说明A,与k-1个点符合1楼性质(B与k-1个点也一样),但这个恰好是本题最难处理的部分.


换句话说k+1个点具有1楼点集性质,那么其中k点的子集是否也一定具有这个性质?

2

Threads

52

Posts

337

Credits

Credits
337

Show all posts

007 Posted at 2014-4-3 20:02:46
回复 7# realnumber


    的确,我再看看……

801

Threads

4888

Posts

310K

Credits

Credits
36170

Show all posts

 Author| isee Posted at 2014-4-4 18:42:19
此问题题容易懂,但难说理。

故将这个 西尔维斯特–加莱定理 介绍给大家。


数学史上称 西尔维斯特–加莱定理(Sylvester–Gallai theorem) ,1893年,西尔维斯特提出,1944加莱发表了的证明,经历的51年。

以初等几何入手的话,反证法相对容易些。

700

Threads

110K

Posts

910K

Credits

Credits
94172
QQ

Show all posts

kuing Posted at 2014-4-5 01:43:01
涨姿势了……

801

Threads

4888

Posts

310K

Credits

Credits
36170

Show all posts

 Author| isee Posted at 2014-4-9 09:18:19
Last edited by hbghlyj at 2025-3-10 02:52:50单墫在 几何不等式 p73 里所给的解法
下面的例题是著名的 Sylvester 定理,这个定理看上去不难,证起来却并不容易,它有好几种不同的证法,但是较简单的证法是巧妙地运用初等几何中的不等式,
[例题11] 平面上的有限个点,如果具有这样的性质: 过这些点中任意两个点的直线上都有这些点中的第三个点, 那么这些点一定在同一条直线上.
解:在下面的叙述中,“点”是指命题中所说的那有限个点,“直线”是指过任两“点”的直线,

如果命题不成立,在任一条“直线”外必有“点”,考虑每一条“直线”外的“点”到该“直线”的距离,这些距离都是正的, 因为“点”的个数与“直线”的条数都是有限的,所以在这些距离中必有一个最小的正距离d.设“点”A到“直线”的距离为d,如果我们能够找到一个“点”到一条“直线”的距离大于零而小于d,那么就导出矛盾(因为是最小的),从而证明了所有的“点”都在某一条“直线”上,即命题成立.


下面这个由面积代换过渡的式子妙不可言。

snap02.png

462

Threads

969

Posts

9934

Credits

Credits
9934

Show all posts

青青子衿 Posted at 2014-6-8 19:39:22
Last edited by hbghlyj at 2025-3-10 02:49:32回复 11# isee
西尔维斯特问题
变分方法的另一个特征是,它经常导出非常简短的证明。 这方面的一个惊人例子是西尔维斯特(J.J. Sylvester)于1893年提出的著名问题:设是平面的一个有限点集,且任何经过其中两个点的直线都一定经过其中另一个点,证明这些点都在一条直线上,不论是西尔维斯特还是他的同时代人都没能找到一个证明,过了将近50年,才由加莱(Galli)发表了第一个证明,但相当复杂,下面这个简短的证明现已广为人知,它是由凯利(L. M. Kelly)于1948年发现的(见《美国数学月刊》(Amer. Math. Monthly) 55,p.28),假设这些具有西尔维斯特所述性质的点不共线,每条经过其中两点的直线和不在这条直线上的一个点都组成一个线点对(L,p),在所有这些线点对中选取一个使得从p到的距离为最小的,令为从p向乙所引垂线的垂足,于是(变分)根据假设,在L上至少存在三个点a,b 和,因此其中两个点,比方说和b,将以a,b,q的顺序位于q

3151

Threads

8498

Posts

610K

Credits

Credits
66208
QQ

Show all posts

hbghlyj Posted at 2022-8-12 01:06:22
isee 发表于 2014-4-4 11:42 此问题题容易懂,但难说理。 故将这个 西尔维斯特–加莱定理 介绍给大家。
證明 以下使用無窮遞降法
  • 在平面上有有限多點,若它們都共線,那我們就找到想要的東西;若非,定義一條「連線」為一條連起來至少有兩點的線。設$l$為一條連線,因為不是所有點都共線,至少有一點$P$不屬於$l$。
  • 若$l$不是有剛好兩點,$l$便至少有三點,稱為$A,B,C$。不失一般性,設$B$在$A$和$C$之間,因為$\angle ABP + \angle CBP = \pi$,所以兩隻角不可能同時是鈍角。不失一般性設$\angle ABP$不是鈍角,而是銳角或直角。
  • 設連結$C$和$P$的線為$m$,$m$是不包括$B$的連線,而且$B$和$m$的距離比$P$和$l$的距離小。
  • 以$B$和$m$取代第二步的$P$和$l$。這個動作不可能無窮次重複,因為若能無窮次重複,連線和某一不在連線上的點距離便會得出一個無窮遞降的序列,但只有有限個點和有限條連線,這是不可能的。因此,至少有一條線剛好有兩點。

3151

Threads

8498

Posts

610K

Credits

Credits
66208
QQ

Show all posts

hbghlyj Posted at 2022-8-12 01:28:45
Last edited by hbghlyj at 2022-8-13 06:46:00
青青子衿 发表于 2014-6-8 12:39
回复 11# isee
(美)戴维·盖尔(David Gale)编著;朱惠霖译.蚁迹寻踪及其他数学探索:上海教育出版社,2001年:第69页
帕施公理与西尔维斯特问题
变分方法的一个特征是,它经常导出非常简短的证明,这方面的一个惊人例子是西尔维斯特(J. J. Sylvester)于1893年提出的著名问题:设$S$是平面上的一个有限点集,且任何经过其中两个点的直线都一定经过其中另一个点,证明这些点都在一条直线上。不论是西尔维斯特还是他的同时代人都没能找到一个证明,过了将近50年,才由加莱(Gallai)发表了第一个证明,但相当复杂。下面这个简短的证明现已广为人知,它是由凯利(L. M. Kelly)于1948年发现的(见《美国数学月刊》(Amer. Math. Monthly)55,p.26-28)。假设这些具有西尔维斯特所述性质的点不共线,每条经过其中两点的直线$L$和不在这条直线上的一个点$p$都组成一个线点对$(L,p)$,在所有这些线点对中选取一个使得从$p$到$L$的距离$d$为最小的。令$q$为从$p$向$L$所引垂线的垂足。于是(变分)根据假设,在$L$上至少存在三个点$a,b$和$c$。因此其中两个点,比方说$a$和$b$,将以$a,b,q$的顺序位于$q$的同一侧($c$可在任何一侧),如图1,但这样从$b$到直线$ap$的距离$d'$就小于$d$,这就产生了一个矛盾。
d01373f082025aaf4bb6be36f7edab64024f1a43[1].png
图1:凯利的证明
凯利的证明确实简短——但是,这里有考克斯特(H. S. M. Coxeter)的说法(见《几何学导引》(Introduction to  Geometry),Wiley,1961,p.181):“这件关于共线性的事[西尔维斯特的问题]显然属于序几何。[确实,在复数域或有限域上这个结果不成立!你可以轻易地在环面上发现一个九点的反例。]凯利的欧氏几何式证明涉及外在的距离概念:这好比用一把长柄锤子去砸一个杏仁。真正恰当的坚果钳由下述证明所提供。”
考克斯特的可爱的证明(很高兴这个证明用的也是变分方法)依赖于帕施(Pasch)公理。这条公理以它最简单的形式断言:一条直线不可能只与一个二角形的一条边相遇。(理解这条公理的一个方法是,把它看作若尔当(Jordan)曲线定理的一个非常初等的特例。如果这条直线通过一条边进入这个三角形,那么它必定要穿过另一条边以回到外面来。)这个证明的图与凯利证明的图非常相似,不过这次我们选取的是任意的点$p$,并找出一条从它出发的射线$R$,$R$上没有$S$中其他点,但至少与一条连接$S$中点的直线相交,每条这样的直线都与$R$相交于某点,于是我们可从中选取一条直线$L$,它与$R$的交点$q$距$p$最近(当然,不是在距离的意义下,而是把它们看作$R$上的一个序集。也就是说,在$p$和$q$之间没有其他交点),现在(变分)$L$上一定有两个点$a$和$b$,它们位于$q$的同一侧,我们证明直线$ap$上不可能有$S$中的另一个点,有两种情况。
29381f30e924b899b3b8bac562061d950b7bf643[1].png
图2:运用帕施公理的证明
情况1 另一个点$y$位于$a$和$p$之间。于是(如图2)不论$c$在哪里,将帕施公理应用于三角形$apq$,直线$cy$将与$R$相交于一个比$q$更近于$p$的点。
情况2 另一个点$x$或$z$不在$a$和$p$之间,于是,同前面一样,不是$bx$就是$bz$,将与$R$相交于一个比$q$更近于$p$的点,(见图3)。
c9fcc3cec3fdfc035b272145d83f8794a5c226f4[1].png
图3:运用帕施公理对另一种情况的证明

A Problem of Collinear Points
Author(s): H. S. M. Coxeter
Source: The American Mathematical Monthly , Jan., 1948, Vol. 55, No. 1 (Jan., 1948), pp. 26-28
$type 2305324 text_filtered.pdf (422.7 KB, Downloads: 29)
按照这帖方法处理PDF(删除下载的IP):
  1. D:\gs9.54.0\bin\gswin32.exe -o "D:\2305324 text_filtered.pdf" -sDEVICE=pdfwrite -dFirstPage=2 -dLastPage=4 -dFILTERTEXT "D:\2305324.pdf"
Copy the Code
Sylvester himself was doubtless aware of the negative answer in the case of the complex projective plane, where the nine points given by
$$
x^{3}+y^{3}+z^{3}-x y z=0
$$
(which are the points of inflexion of any one of the cubic curves $x^{3}+y^{3}+z^{3}$ $=c x y z)$ lie by threes on twelve lines in such a way that every two of the points belong to such a set of three. Some years later, Veblen and Bussey described the finite affine geometries, one of which, called $E G(2,3)$, consists of the nine points $(x, y)$ whose coördinates are residues modulo 3 , and the twelve lines
$$
X x+Y y+Z \equiv 0\pmod 3
$$
which join them. Since any two points determine a line, and every line contains three points, all the points in this geometry form a set of the desired kind (with $n=9)$.

But the question as applied to the ordinary real plane remained unanswered for forty years, and began to seem as intractable as the four-color map problem. Finally, Grünwald established the affirmative answer: such points must all be collinear. Robert Steinberg transformed Grünwald's affine proof into a projective one (this Monthly, vol. 51 (1944), p. 169), and L. M. Kelly discovered a still shorter (and quite unrelated) Euclidean proof (see below).

It seems to me that parallelism and distance are essentially foreign to this problem, which is concerned only with incidence and order. Thus I would not regard the proofs by Grünwald and Kelly as strictly synthetic. Steinberg's projective proof becomes even more elementary when we transform it into a "descriptive" proof, using the single primitive entity point and the single primitive relation between, in terms of which lines and serial order can be defined (see Veblen, Transactions of the American Mathematical Society, vol. 5 (1904), pp. 353-371).

If the $n$ points are not all collinear, some three of them must form a triangle $A B C$. Lines joining $A$ to all other points of the set meet the line $B C$ in $B$ and $C$ and possibly other points. Let $P^{\prime}$ be a point of $B C$ not among these. Then the line $A P^{\prime}$ contains no point of the set except $A$. Joins of pairs of points belonging to the set meet $A P^{\prime}$ in $A, P^{\prime}$, and possibly other points. Let $P$ be the first one of these, going from $A$ towards $P^{\prime}$. ($P$ may possibly coincide with $P^{\prime}$.) Then no join of two points of the set can pass through a point between $A$ and $P$. We shall obtain a contradiction by showing that this "empty" segment $A P$ is not really empty after all.

By its definition, the point $P$ lies on a line containing at least three points of the set, say $Q, R, S$, named so that the segment $P R$ contains $Q$ but not $S$. (We do not care whether $S$ lies beyond $R$ or beyond $P$.) Since $A$ and $R$ belong to the set, the line $A R$ contains a third point of the set, say $O$. Two cases now arise. If $O$ lies between $A$ and $R$, the line $S O$ must intersect the segment $A P$ (by Pasch's Theorem). Similarly, if $O$ lies outside the segment $A R$, the line $Q O$ must intersect the segment $A P$. In either case we have the desired contradiction. Hence the triangle $A B C$ cannot exist, and the $n$ points must in fact be collinear.

Alternative proof of collinearity, by L. M. Kelly. Assume the contrary. If the points be labeled $p_{1}, p_{2}, \cdots, p_{n}$, then there exists a point $p_{i}$ and a line $p_{j} p_{k}$ such that the perpendicular distance from $p_{i}$ to the line $p_{j} p_{k}$ is the shortest non-zero perpendicular distance from any of the points to any of the lines defined by pairs of the points. Let $q$ be the foot of the perpendicular from $p_{i}$ to the line $p_{j} p_{k}$. On the line $p_{j} p_{k}$ there is at least one more point of the set, $p_{l}$. At least two of $p_{j}, p_{k}, p_{l}$ must lie on one side of $q$. Suppose for definiteness that $p_{j} p_{k} q$ is the order $\left(p_{k}\right.$ may coincide with $\left.q\right)$. Then the distance from $p_{k}$ to the line $p_{j} p_{i}$ provides us with a contradiction since it is shorter than the assumed minimum $p_{i} q$.
又见cut-the-knot
Steinberg's Solution
Given the set $Π$ of noncollinear points, consider the set of lines $Σ$ that pass through at least two points of $Π$. Such lines are said to be connecting. Among the connecting lines, those that pass through exactly two points of $Π$ are called ordinary. We consider the configuration in the projective plane.

Let $p$ be any point of $Π$. If $p$ lies on an ordinary line we are done, so we may assume that $p$ lies on no ordinary line. Let $t$ be a line (in the plane) through $p$ but not through any other point of $Π$. The lines in $Σ$ not through $p$ meet $t$, in points $x_1,x_2,…,x_k$ say, named in cyclic order so that one of the two segments determined by $p$ and $x_1$ contains none of the points $x_2,…,x_k$ within it:
Let $s$ be a line of $Σ$ through $x_1$. Then $s$ must be ordinary!
(还没抄完...待续)

3151

Threads

8498

Posts

610K

Credits

Credits
66208
QQ

Show all posts

hbghlyj Posted at 2022-8-12 01:58:25
hbghlyj 发表于 2022-8-11 18:28
...
确实,在复数域或有限域上这个结果不成立!你可以轻易地在环面上发现一个九点的反例。
en.wikipedia.org/wiki/Sylvester–Gallai_theore … Non-real_coordinates
The Hesse configuration, in which the line through every pair of points contains a third point. The Sylvester–Gallai theorem shows that it cannot be realized by straight lines in the Euclidean plane, but it has a realization in the complex projective plane.

手机版Mobile version|Leisure Math Forum

2025-4-21 14:24 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list