Forgot password
 Register account
View 2336|Reply 9

[函数] 三角函数

[Copy link]

167

Threads

381

Posts

5

Reputation

Show all posts

lrh2006 posted 2014-9-15 14:35 |Read mode
已知0<x, y<π/2 ,且siny=xcosx , 则对于满足条件的x,y, 下列四个不等式选项中一定不可能成立的是
A. 0<y<x<π/4
B. π/4< y<x<π/3
C. π/3<y<x<π/2
D. 0<y<π/4, π/3<x<π/2
求指点,谢谢!

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2014-9-15 15:18
本论坛就有类似的题 forum.php?mod=viewthread&tid=2382 参考下呗

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2014-9-15 15:50
回复 2# kuing

唔,那贴好像也没什么参考价值,而且我初步考虑了下,BC 都不可能的样子…… y 一定小于 45 度……

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2014-9-15 15:58
下面证明当 $x\in(0,\pi/2)$ 时 $x\cos x<\sin45\du$。

设 $f(x)=x\cos x$, $x\in(0,\pi/2)$,求导得 $f'(x)=\cos x-x\sin x$,故易见 $f(x)$ 先增后减,取最大值时 $x=x_0$ 满足 $x_0=\cot x_0$。

由 $\cot x_0=x_0<\tan x_0 \riff \tan x_0>1 \riff x_0>45\du$,故此
\[f(x)_{\max}=f(x_0)=x_0\cos x_0=\cot x_0\cos x_0=\frac{1-\sin^2x_0}{\sin x_0}<\frac{1-\sin^245\du}{\sin45\du}=\sin45\du,\]
即得 $x\cos x<\sin45\du$。

由此即有 $\sin y=x\cos x<\sin45\du \riff y<45\du$。

167

Threads

381

Posts

5

Reputation

Show all posts

original poster lrh2006 posted 2014-9-15 22:10
回复 4# kuing


    怎么回事,都是乱码,看不懂诶

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2014-9-15 22:17
回复 5# lrh2006

?刷新一下试试

84

Threads

2340

Posts

4

Reputation

Show all posts

其妙 posted 2014-9-21 14:53
把那边的转过来:


因为$x\cos y=\sin x=2\sin\dfrac x2\cos\dfrac x2<2\cdot\dfrac x2\cos\dfrac x2=x\cos\dfrac x2$,故$\cos y<\cos\dfrac x2$,即:$y>\dfrac x2$.

又 $\cos y=\dfrac{\sin x}{x}=\dfrac{\tan x\cos x}{x}>\dfrac{ x\cos x}{x}=\cos x$,故$y<x$.

于是,$\dfrac x2<y<x$.

167

Threads

381

Posts

5

Reputation

Show all posts

original poster lrh2006 posted 2014-9-23 23:15
终于能打开网页了,而且不是乱码,太好啦。谢谢两位高手,不过参考答案好像是C,我明天再去看下。

9

Threads

55

Posts

0

Reputation

Show all posts

goft posted 2015-1-26 18:31
又发现一道类似题目:
12.png

0

Threads

406

Posts

6

Reputation

Show all posts

爪机专用 posted 2015-1-26 18:53
回复 9# goft

这个本论坛也有记载 forum.php?mod=viewthread&tid=2367

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-15 14:15 GMT+8

Powered by Discuz!

Processed in 0.016531 seconds, 25 queries