Forgot password?
 Create new account
View 2010|Reply 9

来自人教论坛的不等式整数解

[Copy link]

701

Threads

110K

Posts

910K

Credits

Credits
94172
QQ

Show all posts

kuing Posted at 2014-11-10 14:52:25 |Read mode
原贴地址:bbs.pep.com.cn/forum.php?mod=viewthread&tid=3107597
原发贴人:sgp991106
题目:
085436ljk9lgglqhtklgrl.png

易见,当 $x\in\mbb Z$ 时
\[
\frac{p-15}{16}<x\leqslant\frac{p-7}8 \iff \left[ \frac{p-15}{16} \right]+1\leqslant x\leqslant\left[ \frac{p-7}8 \right],
\]
可见,整数解的个数为 $6$ 当且仅当
\[
\left[ \frac{p-7}8 \right]-\left[ \frac{p-15}{16} \right]=6,
\]
设 $p=16k+r$,其中 $k$, $r\in\mbb Z$, $0\leqslant r<16$,代入上式即为
\[
k+\left[ \frac{r-7}8 \right]-\left[ \frac{r-15}{16} \right]=6,
\]
当 $0\leqslant r\leqslant6$ 时
\[\left[ \frac{r-7}8 \right]=\left[ \frac{r-15}{16} \right]=-1\riff k=6;\]
当 $7\leqslant r\leqslant 14$ 时
\[\left[ \frac{r-7}8 \right]=0,\left[ \frac{r-15}{16} \right]=-1\riff k=5;\]
当 $r=15$ 时
\[\left[ \frac{r-7}8 \right]=1,\left[ \frac{r-15}{16} \right]=0\riff k=5,\]
综上,$p$ 可以取 $16\times 5+r$, $7\leqslant r\leqslant15$ 以及 $16\times 6+r$, $0\leqslant r\leqslant6$,亦即是 $87\leqslant p\leqslant102$。

801

Threads

4889

Posts

310K

Credits

Credits
36169

Show all posts

isee Posted at 2014-11-11 08:29:14

2

Threads

465

Posts

6357

Credits

Credits
6357
QQ

Show all posts

爪机专用 Posted at 2014-11-11 11:29:27
回复 2# isee

没看出来

801

Threads

4889

Posts

310K

Credits

Credits
36169

Show all posts

isee Posted at 2014-11-11 11:33:34
回复 3# 爪机专用

不等式啊,数论啊等“杂交”。

这类题的解法本无定法,看到解答后往往及其简单。

65

Threads

414

Posts

3556

Credits

Credits
3556

Show all posts

Tesla35 Posted at 2014-11-11 17:44:16
也写一个做法,
kuing我记我的在人教群发过类似的题。
不等式端点长度:$\frac{p-7}{8}-\frac{p-15}{16}$满足下式:
$$5<\frac{p-7}{8}-\frac{p-15}{16}<7$$
解得
$$79<p<111$$
即$$80\leq p\leq 110$$
此时原不等式左端点范围:
$$4.0625\leq\frac{p-15}{16}\leq 5.9375$$
之间只有5这一个整数
计算$\frac{p-15}{16}=5$得$p=95$
下分两种情况:
(1)当$80\leq p<95$时原不等式左端点$4.0625\leq\frac{p-15}{16}<5$
需同时保证右端点
$$10\leq\frac{p-7}{8}<11$$
解得:
$$87\leq p<95$$
(2)当$95\leq p\leq 110$时原不等式左端点$5\leq\frac{p-15}{16}<5.9375$
需同时保证右端点
$$11\leq\frac{p-7}{8}<12$$
解得:
$$95\leq p<103$$

综上:$$87\leq p\leq 102$$
和kuing写的本质可能差不多,表面形式有些区别

701

Threads

110K

Posts

910K

Credits

Credits
94172
QQ

Show all posts

 Author| kuing Posted at 2014-11-11 20:20:00
回复 5# Tesla35

哇!585解题!!

PS、第一步左边是不是应该有等

29

Threads

73

Posts

662

Credits

Credits
662

Show all posts

转化与化归 Posted at 2014-11-11 20:22:48
不等式.jpg

65

Threads

414

Posts

3556

Credits

Credits
3556

Show all posts

Tesla35 Posted at 2014-11-11 20:24:05
回复 6# kuing
长度恰好5覆盖不到6个数吧

701

Threads

110K

Posts

910K

Credits

Credits
94172
QQ

Show all posts

 Author| kuing Posted at 2014-11-11 20:32:39
回复 8# Tesla35

噢,忘了原不等式左边是 < ,你是正确嘀

701

Threads

110K

Posts

910K

Credits

Credits
94172
QQ

Show all posts

 Author| kuing Posted at 2014-11-11 20:34:23
回复 7# 转化与化归

原来关键就是第一个式子的发现啊

手机版Mobile version|Leisure Math Forum

2025-4-20 22:13 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list