Forgot password
 Register account
View 1831|Reply 2

[组合] 2015苏锡常镇的一道构造性试题

[Copy link]

92

Threads

89

Posts

0

Reputation

Show all posts

aishuxue posted 2015-3-19 19:16 |Read mode
Last edited by hbghlyj 2025-4-7 03:01若存在 $n$ 个不同的正整数 $a_1, a_2, \cdots, a_n$,对任意 $1 \leqslant i<j \leqslant n$,都有 $\frac{a_i+a_j}{a_i-a_j} \inZ$,则称这 $n$ 个不同的正整数 $a_1, a_2, \cdots, a_n$ 为"$n$ 个好数"。
  • 请分别对 $n=2, n=3$ 构造一组"好数";
  • 证明:对任意正整数 $n(n \geqslant 2)$,均存在"$n$ 个好数"。

92

Threads

89

Posts

0

Reputation

Show all posts

original poster aishuxue posted 2015-3-19 19:21
这类题目,应教会学生怎么去分析!

68

Threads

406

Posts

3

Reputation

Show all posts

Tesla35 posted 2015-3-19 19:38
很有北京高考试题数列的风格嘛

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-20 05:50 GMT+8

Powered by Discuz!

Processed in 0.012573 seconds, 23 queries