Forgot password?
 Register account
View 1824|Reply 2

[组合] 2015苏锡常镇的一道构造性试题

[Copy link]

92

Threads

89

Posts

983

Credits

Credits
983

Show all posts

aishuxue Posted 2015-3-19 19:16 |Read mode
Last edited by hbghlyj 2025-4-7 03:01若存在 $n$ 个不同的正整数 $a_1, a_2, \cdots, a_n$,对任意 $1 \leqslant i<j \leqslant n$,都有 $\frac{a_i+a_j}{a_i-a_j} \inZ$,则称这 $n$ 个不同的正整数 $a_1, a_2, \cdots, a_n$ 为"$n$ 个好数"。
  • 请分别对 $n=2, n=3$ 构造一组"好数";
  • 证明:对任意正整数 $n(n \geqslant 2)$,均存在"$n$ 个好数"。

92

Threads

89

Posts

983

Credits

Credits
983

Show all posts

 Author| aishuxue Posted 2015-3-19 19:21
这类题目,应教会学生怎么去分析!

67

Threads

407

Posts

3537

Credits

Credits
3537

Show all posts

Tesla35 Posted 2015-3-19 19:38
很有北京高考试题数列的风格嘛

Mobile version|Discuz Math Forum

2025-6-5 01:28 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit