Forgot password?
 Register account
View 2361|Reply 7

两个不定积分求解

[Copy link]

459

Threads

952

Posts

9843

Credits

Credits
9843

Show all posts

青青子衿 Posted 2013-10-1 13:26 |Read mode
Last edited by hbghlyj 2025-5-6 21:35\begin{aligned}
& \int \sqrt{\ln x} d x \\
& \int \sqrt{\frac{(1-\cos \theta) \cos ^2 \theta}{a \cos ^2 \theta+b}} d \theta
\end{aligned}

682

Threads

110K

Posts

910K

Credits

Credits
90973
QQ

Show all posts

kuing Posted 2013-10-1 15:15
有没有初等函数解都不好说,我高数弱还是略过了……
PS、不知楼主的这些题目都从哪来?

84

Threads

2336

Posts

110K

Credits

Credits
13076

Show all posts

其妙 Posted 2013-10-2 18:27
资料,好像用不到啊[阴险]
blog图片博客.jpg

6

Threads

245

Posts

2284

Credits

Credits
2284

Show all posts

睡神 Posted 2013-10-2 19:32
第一个肯定没初等解,第二个好像有初等解…迟点再算算看…
除了不懂,就是装懂

459

Threads

952

Posts

9843

Credits

Credits
9843

Show all posts

 Author| 青青子衿 Posted 2014-1-20 15:36
回复 3# 其妙
资料,好像用不到啊

其妙 发表于 2013-10-2 18:27
补充一下: 搜狗截图20140120153537.png

0

Threads

15

Posts

80

Credits

Credits
80

Show all posts

LLLYSL Posted 2014-7-1 07:37
回复 3# 其妙


    幂函数和对数函数乘积总是可以积出来(92~95),指数函数和三角函数乘积也是可以积出来(98,99)

459

Threads

952

Posts

9843

Credits

Credits
9843

Show all posts

 Author| 青青子衿 Posted 2015-8-15 16:53
回复 4# 睡神
第一个肯定没初等解,第二个好像有初等解…迟点再算算看…
睡神 发表于 2013-10-2 19:32
\[ F(x) =\boldsymbol{\int{\sqrt{\ln\left(x\right)}}\, \mathrm{d}x =}\dfrac{\sqrt{{\pi}}\mathrm{i}\operatorname{erf}\left(\mathrm{i}\sqrt{\ln\left(x\right)}\right)+2x\sqrt{\ln\left(x\right)}}{2}+C\]

54

Threads

160

Posts

1234

Credits

Credits
1234

Show all posts

血狼王 Posted 2015-12-23 18:35
回复 7# 青青子衿


概率积分动用上了,厉害

Mobile version|Discuz Math Forum

2025-6-5 07:35 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit