Last edited by realnumber at 2016-6-10 10:14:00回复 4#Tesla35
\[ \vv{a}=(\cos{x},\sin{x}),\vv{b}=(2\cos y,2\sin y),\vv{e}=(\cos z,\sin z).\]
\[\sqrt{6}\ge \abs{\cos{(x-z)}}+\abs{2\cos{(y-z)}}\ge \abs{\cos{(x-z)}+2\cos{(y-z)}}=\abs{(\cos x +2\cos y)\cos z +(\sin x +2\sin y)\sin z}.\]
\[6\ge (\cos x +2\cos y)^2+(\sin x +2\sin y)^2.\]
\[\cos{(x-y)}\le \frac{1}{4}.\]
\[\vv{a}·\vv{b} 最大为\frac{1}{2}.\]