Forgot password?
 Create new account
View 4812|Reply 28

一道三角题

[Copy link]

27

Threads

103

Posts

677

Credits

Credits
677

Show all posts

史嘉 Posted at 2013-10-18 20:06:58 |Read mode
am.jpg
答案是1.
请教————————————--

700

Threads

110K

Posts

910K

Credits

Credits
94172
QQ

Show all posts

kuing Posted at 2013-10-18 20:12:34
笨方法,设 $\tan(\alpha/2)=a$, $\tan(\beta/2)=b$,条件等式和所求的都化为二者,一定能做。

27

Threads

103

Posts

677

Credits

Credits
677

Show all posts

 Author| 史嘉 Posted at 2013-10-18 20:14:56
积化和差,和差化积,万能公式,我都试了,太麻烦。

700

Threads

110K

Posts

910K

Credits

Credits
94172
QQ

Show all posts

kuing Posted at 2013-10-18 20:16:04
回复 3# 史嘉

条件中,分母展开,把分子除下来,就变成 tan 了。所求的,用万能公式变成 tan,计算不会很复杂。

700

Threads

110K

Posts

910K

Credits

Credits
94172
QQ

Show all posts

kuing Posted at 2013-10-18 20:18:09
我记得我以前是做过这道题的,在解题群,小阳当时也有一个解法,群聊记录不好翻,晚点再说,看电视去了……

27

Threads

103

Posts

677

Credits

Credits
677

Show all posts

 Author| 史嘉 Posted at 2013-10-18 20:18:41
好的,我再试一次。
怎么没有三角分类?也是一大块呀。

700

Threads

110K

Posts

910K

Credits

Credits
94172
QQ

Show all posts

kuing Posted at 2013-10-18 20:29:22
回复 6# 史嘉
纯三角题不太多吧,很多时候都和其他类型结合在一起,比如说函数或者几何之类的,所以我就没另外设了。

87

Threads

2383

Posts

110K

Credits

Credits
13325

Show all posts

其妙 Posted at 2013-10-18 20:31:04
特殊值法,$\alpha=\beta=\dfrac{\pi}3$,于是答案为1。
妙不可言,不明其妙,不着一字,各释其妙!

801

Threads

4888

Posts

310K

Credits

Credits
36170

Show all posts

isee Posted at 2013-10-21 10:33:25
Last edited by isee at 2013-10-21 10:45:00
笨方法,设 $\tan(\alpha/2)=a$, $\tan(\beta/2)=b$,条件等式和所求的都化为二者,一定能做。 ...
kuing 发表于 2013-10-18 20:12
第一感亦如此,具体过程如下:

题目:
已知$\dfrac {\cos \alpha \cdot \cos {\dfrac \beta 2}}{\cos (\alpha -\dfrac \beta 2)}+\dfrac {\cos \beta \cdot \cos {\dfrac \alpha 2}}{\cos (\beta -\dfrac \alpha 2)}=1$,求$\cos \alpha+\cos \beta$.

解答:
记$\tan \dfrac \alpha 2=a,\tan \dfrac \beta 2=b$,则$\cos\alpha=\dfrac {\cos^2\frac \alpha 2 -\sin^2\frac \alpha 2}{\cos^2\frac \alpha 2 +\sin^2\frac \alpha 2}=\dfrac {1-a^2}{1+a^2}$.
同样的$\cos \beta=\dfrac {1-b^2}{1+b^2}$

\begin{align*}
\dfrac {\cos \alpha \cdot \cos {\dfrac \beta 2}}{\cos (\alpha -\dfrac \beta 2)}&=\dfrac {\cos \alpha \cdot \cos {\dfrac \beta 2}}{\cos \alpha \cdot \cos\dfrac \beta 2+\sin \alpha \cdot \sin\dfrac \beta 2}\\[2ex]
&=\dfrac {1}{1+\tan \alpha \cdot \tan\dfrac \beta 2}\\[2ex]
&=\dfrac {1}{1+\dfrac {2a}{1-a^2} \cdot b}\\[2ex]
&=\dfrac {1-a^2}{1-a^2+2ab}\\[2em]
\dfrac {\cos \beta \cdot \cos {\dfrac \alpha 2}}{\cos (\beta -\dfrac \alpha 2)}&=\dfrac {1-b^2}{1-b^2+2ab}\\[2ex]
\therefore \dfrac {\cos \alpha \cdot \cos {\dfrac \beta 2}}{\cos (\alpha -\dfrac \beta 2)}+\dfrac {\cos \beta \cdot \cos {\dfrac \alpha 2}}{\cos (\beta -\dfrac \alpha 2)}&=\dfrac {1-a^2}{1-a^2+2ab}+\dfrac{1-b^2}{1-b^2+2ab}=1\\[2ex]
\Rightarrow (1-a^2)(1-b^2+2ab)&+(1-b^2)(1-a^2+2ab)\\&=(1-a^2+2ab)(1-b^2+2ab)\\[2ex]
(1-b^2)(1-a^2+2ab)&=2ab(1-b^2+2ab)\\[2ex]
1-a^2-b^2&=3a^2b^2\\[2ex]
  a^2+b^2&=1-3a^2b^2\\[2em]
\therefore \cos \alpha+\cos \beta=\dfrac {1-a^2}{1+a^2}+\dfrac {1-b^2}{1+b^2}&=\dfrac {2-2a^2b^2}{1+a^2+b^2+a^2b^2}\\[2ex]
&=\dfrac {2-2a^2b^2}{1+1-3a^2b^2+a^2b^2}\\[2ex]
&=1
\end{align*}

700

Threads

110K

Posts

910K

Credits

Credits
94172
QQ

Show all posts

kuing Posted at 2013-10-21 14:03:02
回复 9# isee

就是这样嗯

87

Threads

2383

Posts

110K

Credits

Credits
13325

Show all posts

其妙 Posted at 2013-10-21 17:40:01
猜想这是个特殊方程,例如可以证得$\cos\dfrac{\alpha}2=\cos(\beta-\dfrac{\alpha}2)$之类的结果?
是不是可用均值不等式的取等条件来做呢?
妙不可言,不明其妙,不着一字,各释其妙!

87

Threads

2383

Posts

110K

Credits

Credits
13325

Show all posts

其妙 Posted at 2013-10-21 17:50:51
回复 11# 其妙
看来不行的了![尴尬],
妙不可言,不明其妙,不着一字,各释其妙!

4

Threads

60

Posts

388

Credits

Credits
388

Show all posts

零定义 Posted at 2013-10-21 20:25:48
尼玛...需要那么麻烦么...
睡自己的觉,让别人说去...

801

Threads

4888

Posts

310K

Credits

Credits
36170

Show all posts

isee Posted at 2013-10-21 20:46:33
回复 13# 零定义

笨方法嘛~(主要是过程写很细,照顾了学生)

4

Threads

60

Posts

388

Credits

Credits
388

Show all posts

零定义 Posted at 2013-10-21 20:55:13
$\dfrac{\cos\alpha\cos\dfrac{\beta}{2}}{\cos(\alpha-\dfrac{\beta}{2})}+\dfrac{\cos\beta\cos\dfrac{\alpha}{2}}{\cos(\beta-\dfrac{\alpha}{2})}=\dfrac{\cos\alpha\cos\dfrac{\beta}{2}}{\cos\alpha\cos\dfrac{\beta}{2}+\sin\alpha\sin\dfrac{\beta}{2}}+\dfrac{\cos\beta\cos\dfrac{\alpha}{2}}{\cos\beta\cos\dfrac{\alpha}{2}+\sin\beta\sin\dfrac{\alpha}{2}}=\dfrac{1}{1+\tan\alpha\tan\dfrac{\beta}{2}}+\dfrac{1}{1+\tan\beta\tan\dfrac{\alpha}{2}}=1$

整理得:$\tan\alpha\tan\dfrac{\alpha}{2}\tan\beta\tan\dfrac{\beta}{2}=1$

所以 $\dfrac{1-\cos\alpha}{\cos\alpha}\cdot \dfrac{1-\cos\beta}{\cos\beta}=1$

整理得:$\cos\alpha+\cos\beta=1$
睡自己的觉,让别人说去...

4

Threads

60

Posts

388

Credits

Credits
388

Show all posts

零定义 Posted at 2013-10-21 21:00:31
回复 15# 零定义
不知道这样弄行木行呢...看着代码发晕了...
睡自己的觉,让别人说去...

801

Threads

4888

Posts

310K

Credits

Credits
36170

Show all posts

isee Posted at 2013-10-21 21:04:36
$\dfrac{\cos\alpha\cos\dfrac{\beta}{2}}{\cos(\alpha-\dfrac{\beta}{2})}+\dfrac{\cos\beta\cos\dfrac{\a ...
零定义 发表于 2013-10-21 20:55

原来都不必换元,联系目标式,活选正切半角公式,挻好。

801

Threads

4888

Posts

310K

Credits

Credits
36170

Show all posts

isee Posted at 2013-10-21 21:06:38
回复  零定义
不知道这样弄行木行呢...看着代码发晕了...
零定义 发表于 2013-10-21 21:00

   

我看懂了,如果想手动换行,论坛里可强制用 \\  连续两个\

这类题目人教版的教材是越来越少

4

Threads

60

Posts

388

Credits

Credits
388

Show all posts

零定义 Posted at 2013-10-21 21:15:01
回复 18# isee
不是换不换行的问题...是代码实在太长鸟...
睡自己的觉,让别人说去...

700

Threads

110K

Posts

910K

Credits

Credits
94172
QQ

Show all posts

kuing Posted at 2013-10-21 21:57:48
牛笔

手机版Mobile version|Leisure Math Forum

2025-4-21 14:16 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list