Forgot password?
 Register account
Author: 史嘉

一道三角题

[Copy link]

84

Threads

2336

Posts

110K

Credits

Credits
13076

Show all posts

其妙 Posted 2013-10-21 22:40
回复 20# kuing
牛笔
妙不可言,不明其妙,不着一字,各释其妙!

6

Threads

245

Posts

2284

Credits

Credits
2284

Show all posts

睡神 Posted 2013-10-22 00:06
回复 20# kuing
。。。这也牛笔?那你们的,我只能说牛笔^(N+1)了…
除了不懂,就是装懂

24

Threads

1010

Posts

110K

Credits

Credits
12655

Show all posts

战巡 Posted 2013-10-22 11:40
回复 1# 史嘉

纯三角也可以做吧....
首先积化和差...
\[\frac{\cos(a)\cos(\frac{b}{2})}{\cos(a-\frac{b}{2})}+\frac{\cos(b)\cos(\frac{a}{2})}{\cos(b-\frac{a}{2})}=\frac{\cos(a+\frac{b}{2})+\cos(a-\frac{b}{2})}{2\cos(a-\frac{b}{2})}+\frac{\cos(b+\frac{a}{2})+\cos(b-\frac{a}{2})}{2\cos(b-\frac{a}{2})}\]
\[=\frac{\cos(a+\frac{b}{2})}{2\cos(a-\frac{b}{2})}+\frac{\cos(b+\frac{a}{2})}{2\cos(b-\frac{a}{2})}+1=1\]
\[\frac{\cos(a+\frac{b}{2})}{2\cos(a-\frac{b}{2})}+\frac{\cos(b+\frac{a}{2})}{2\cos(b-\frac{a}{2})}=0\]
\[\cos(a+\frac{b}{2})\cos(b-\frac{a}{2})+\cos(b+\frac{a}{2})\cos(a-\frac{b}{2})=0\]
再次积化和差
\[\frac{1}{2}[\cos(\frac{a}{2}-\frac{3b}{2})+\cos(\frac{3a}{2}-\frac{b}{2})+\cos(\frac{3a}{2}+\frac{b}{2})+\cos(\frac{a}{2}+\frac{3b}{2})]=0\]
然后重新和差化积
\[\cos(\frac{a}{2})\cos(\frac{3b}{2})+\cos(\frac{b}{2})\cos(\frac{3a}{2})=0\]
\[\cos(\frac{a}{2})[\cos(b)\cos(\frac{b}{2})-\sin(b)\sin(\frac{b}{2})]+\cos(\frac{b}{2})[\cos(a)\cos(\frac{a}{2})-\sin(a)\sin(\frac{a}{2})]=0\]
\[\cos(\frac{a}{2})\cos(\frac{b}{2})[\cos(a)+\cos(b)]=\cos(\frac{b}{2})\sin(\frac{a}{2})\sin(a)+\cos(\frac{a}{2})\sin(\frac{b}{2})\sin(b)\]
\[\cos(a)+\cos(b)=2\sin^2(\frac{a}{2})+2\sin^2(\frac{b}{2})=2-\cos(a)-\cos(b)\]
\[\cos(a)+\cos(b)=1\]

768

Threads

4685

Posts

310K

Credits

Credits
35004

Show all posts

isee Posted 2013-10-22 11:56
Last edited by isee 2013-10-22 12:07
回复  史嘉

纯三角也可以做吧....
首先积化和差...
\[\frac{\cos(a)\cos(\frac{b}{2})}{\cos(a-\frac{b}{ ...
战巡 发表于 2013-10-22 11:40

来个更狠的~看到就立刻顶,正确性不用怀疑

==

欣赏完毕,行云流水,水到渠成,多么扎实的观察力,多么扎实的公式变形!

682

Threads

110K

Posts

910K

Credits

Credits
90973
QQ

Show all posts

kuing Posted 2013-10-22 11:59
牛笔……而且仲禁好心机写代码……

768

Threads

4685

Posts

310K

Credits

Credits
35004

Show all posts

isee Posted 2013-10-22 12:10
回复 25# kuing


   


他一直写文字式的代码啊,在人教,用LaTeX就更如如虎添翼~

84

Threads

2336

Posts

110K

Credits

Credits
13076

Show all posts

其妙 Posted 2013-10-22 12:39
战版的加盟,让论坛更加的好看了!猛!
妙不可言,不明其妙,不着一字,各释其妙!

27

Threads

102

Posts

672

Credits

Credits
672

Show all posts

 Author| 史嘉 Posted 2013-10-24 11:26
谢谢谢谢!
不代换,更快捷些。

27

Threads

102

Posts

672

Credits

Credits
672

Show all posts

 Author| 史嘉 Posted 2013-10-24 11:32
回复 23# 战巡


    厉害,我积化和差一通,以失败告终!
再次感谢大家!!!

Mobile version|Discuz Math Forum

2025-6-5 19:38 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit