Forgot password?
 Create new account
Author: 史嘉

一道三角题

[Copy link]

87

Threads

2383

Posts

110K

Credits

Credits
13325

Show all posts

其妙 Posted at 2013-10-21 22:40:30
回复 20# kuing
牛笔
妙不可言,不明其妙,不着一字,各释其妙!

7

Threads

349

Posts

2809

Credits

Credits
2809

Show all posts

睡神 Posted at 2013-10-22 00:06:02
回复 20# kuing
。。。这也牛笔?那你们的,我只能说牛笔^(N+1)了…
除了不懂,就是装懂

25

Threads

1020

Posts

110K

Credits

Credits
12672

Show all posts

战巡 Posted at 2013-10-22 11:40:48
回复 1# 史嘉

纯三角也可以做吧....
首先积化和差...
\[\frac{\cos(a)\cos(\frac{b}{2})}{\cos(a-\frac{b}{2})}+\frac{\cos(b)\cos(\frac{a}{2})}{\cos(b-\frac{a}{2})}=\frac{\cos(a+\frac{b}{2})+\cos(a-\frac{b}{2})}{2\cos(a-\frac{b}{2})}+\frac{\cos(b+\frac{a}{2})+\cos(b-\frac{a}{2})}{2\cos(b-\frac{a}{2})}\]
\[=\frac{\cos(a+\frac{b}{2})}{2\cos(a-\frac{b}{2})}+\frac{\cos(b+\frac{a}{2})}{2\cos(b-\frac{a}{2})}+1=1\]
\[\frac{\cos(a+\frac{b}{2})}{2\cos(a-\frac{b}{2})}+\frac{\cos(b+\frac{a}{2})}{2\cos(b-\frac{a}{2})}=0\]
\[\cos(a+\frac{b}{2})\cos(b-\frac{a}{2})+\cos(b+\frac{a}{2})\cos(a-\frac{b}{2})=0\]
再次积化和差
\[\frac{1}{2}[\cos(\frac{a}{2}-\frac{3b}{2})+\cos(\frac{3a}{2}-\frac{b}{2})+\cos(\frac{3a}{2}+\frac{b}{2})+\cos(\frac{a}{2}+\frac{3b}{2})]=0\]
然后重新和差化积
\[\cos(\frac{a}{2})\cos(\frac{3b}{2})+\cos(\frac{b}{2})\cos(\frac{3a}{2})=0\]
\[\cos(\frac{a}{2})[\cos(b)\cos(\frac{b}{2})-\sin(b)\sin(\frac{b}{2})]+\cos(\frac{b}{2})[\cos(a)\cos(\frac{a}{2})-\sin(a)\sin(\frac{a}{2})]=0\]
\[\cos(\frac{a}{2})\cos(\frac{b}{2})[\cos(a)+\cos(b)]=\cos(\frac{b}{2})\sin(\frac{a}{2})\sin(a)+\cos(\frac{a}{2})\sin(\frac{b}{2})\sin(b)\]
\[\cos(a)+\cos(b)=2\sin^2(\frac{a}{2})+2\sin^2(\frac{b}{2})=2-\cos(a)-\cos(b)\]
\[\cos(a)+\cos(b)=1\]

801

Threads

4888

Posts

310K

Credits

Credits
36170

Show all posts

isee Posted at 2013-10-22 11:56:39
Last edited by isee at 2013-10-22 12:07:00
回复  史嘉

纯三角也可以做吧....
首先积化和差...
\[\frac{\cos(a)\cos(\frac{b}{2})}{\cos(a-\frac{b}{ ...
战巡 发表于 2013-10-22 11:40

来个更狠的~看到就立刻顶,正确性不用怀疑

==

欣赏完毕,行云流水,水到渠成,多么扎实的观察力,多么扎实的公式变形!

700

Threads

110K

Posts

910K

Credits

Credits
94172
QQ

Show all posts

kuing Posted at 2013-10-22 11:59:41
牛笔……而且仲禁好心机写代码……

801

Threads

4888

Posts

310K

Credits

Credits
36170

Show all posts

isee Posted at 2013-10-22 12:10:39
回复 25# kuing


   


他一直写文字式的代码啊,在人教,用LaTeX就更如如虎添翼~

87

Threads

2383

Posts

110K

Credits

Credits
13325

Show all posts

其妙 Posted at 2013-10-22 12:39:42
战版的加盟,让论坛更加的好看了!猛!
妙不可言,不明其妙,不着一字,各释其妙!

27

Threads

103

Posts

677

Credits

Credits
677

Show all posts

 Author| 史嘉 Posted at 2013-10-24 11:26:23
谢谢谢谢!
不代换,更快捷些。

27

Threads

103

Posts

677

Credits

Credits
677

Show all posts

 Author| 史嘉 Posted at 2013-10-24 11:32:51
回复 23# 战巡


    厉害,我积化和差一通,以失败告终!
再次感谢大家!!!

手机版Mobile version|Leisure Math Forum

2025-4-21 14:17 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list