Forgot password
 Register account
View 1327|Reply 4

证明有关正态分布的pdf的等式

[Copy link]

17

Threads

24

Posts

0

Reputation

Show all posts

opuikl_0 posted 2017-5-1 04:58 |Read mode
证明下面这个等式成立:
2F84EE2F-409C-45DA-AE5B-76EA7B19DC37.gif
这里的 $\phi$ 是 $N(0,1)$ 的 pdf.

24

Threads

1017

Posts

46

Reputation

Show all posts

战巡 posted 2017-5-1 06:51
回复 1# opuikl_0


....
为什么这还要问?
带进去硬算不就完了么,又不是什么很复杂的东西

17

Threads

24

Posts

0

Reputation

Show all posts

original poster opuikl_0 posted 2017-5-1 07:22
回复 2# 战巡

额 我尝试代入到pdf的指数形式里面去算过,算不出相等啊。。

24

Threads

1017

Posts

46

Reputation

Show all posts

战巡 posted 2017-5-1 08:16
怎么会不等呢?真是服了你了
\[\phi(-\frac{\ln(m)}{\sqrt{v}}+\frac{\sqrt{v}}{2})=\frac{1}{\sqrt{2\pi}}\exp(-\frac{1}{2}[-\frac{\ln(m)}{\sqrt{v}}+\frac{\sqrt{v}}{2}]^2)\]
\[=\frac{1}{\sqrt{2\pi}}\exp(-\frac{1}{2}[(\frac{\ln(m)}{\sqrt{v}}+\frac{\sqrt{v}}{2})-\frac{2\ln(m)}{\sqrt{v}}]^2)\]
\[=\frac{1}{\sqrt{2\pi}}\exp(-\frac{1}{2}[(\frac{\ln(m)}{\sqrt{v}}+\frac{\sqrt{v}}{2})^2-\frac{4\ln(m)}{\sqrt{v}}(\frac{\ln(m)}{\sqrt{v}}+\frac{\sqrt{v}}{2})+(\frac{2\ln(m)}{\sqrt{v}})^2])\]
\[=\frac{1}{\sqrt{2\pi}}\exp(-\frac{1}{2}[(\frac{\ln(m)}{\sqrt{v}}+\frac{\sqrt{v}}{2})^2-2\ln(m)])\]

17

Threads

24

Posts

0

Reputation

Show all posts

original poster opuikl_0 posted 2017-5-1 08:59
回复 4# 战巡

明白了!谢谢!

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-20 10:56 GMT+8

Powered by Discuz!

Processed in 0.012528 seconds, 25 queries