Forgot password?
 Register account
Author: 乌贼

[几何] 三角形之内切圆

[Copy link]

3156

Threads

7923

Posts

610K

Credits

Credits
64196
QQ

Show all posts

hbghlyj Posted 2023-5-3 19:32
Gergonne line
Proof:
$A'B'$ is the polar of $C,$ $AB$ is the polar of $C',$ by La Hire's theorem, $C''$ is the pole of $CC'.$ Similarly, $A''$ is the pole of $AA',$ $B''$ is the pole of $BB'.$
Since their polars $AA', BB',$ and $CC'$ are concurrent (in the Gergonne point $\rm Ge$), the poles $A'', B'',$ and $C''$ are collinear to a line (the Gergonne line, naturally.)
GergonneLine[2].jpg

54

Threads

959

Posts

9977

Credits

Credits
9977

Show all posts

 Author| 乌贼 Posted 2023-8-5 22:04

54

Threads

959

Posts

9977

Credits

Credits
9977

Show all posts

 Author| 乌贼 Posted 2023-8-13 00:21
Last edited by 乌贼 2023-8-13 01:32题简洁搬过来
forum.php?mod=viewthread&tid=11334&extra=page=1

54

Threads

959

Posts

9977

Credits

Credits
9977

Show all posts

 Author| 乌贼 Posted 2023-8-14 01:45

54

Threads

959

Posts

9977

Credits

Credits
9977

Show all posts

 Author| 乌贼 Posted 2023-8-15 00:07

54

Threads

959

Posts

9977

Credits

Credits
9977

Show all posts

 Author| 乌贼 Posted 2023-11-11 11:37
题目: 34.png
   如图,直径$ AB $与弦$ CD $交于圆外一点$ P $,$ C,C_1 $关于$ AB $对称,$ E $为$ AB $与$ C_1D $交点。求证:$ \dfrac{OE}{OA}=\dfrac{BE}{PB} $
证明: 35.png
连接$ OC $,有\[ \angle CDE=\angle COE \]即$ CDOE $四点共圆,由圆的割线定理得\[ PB\cdot PA=PC\cdot PD=PE\cdot PO \]展开\[ PB\cdot (PB+BE+OE+OA)=(PB+BE)\cdot (PB+BE+OE) \]整理后有\[  \dfrac{OE}{OA}=\dfrac{BE}{PB}  \]

Mobile version|Discuz Math Forum

2025-6-5 19:44 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit