Forgot password?
 Create new account
Author: 乌贼

[几何] 三角形之内切圆

[Copy link]

3151

Threads

8498

Posts

610K

Credits

Credits
66208
QQ

Show all posts

hbghlyj Posted at 2023-5-3 19:32:25
Gergonne line
Proof:
$A'B'$ is the polar of $C,$ $AB$ is the polar of $C',$ by La Hire's theorem, $C''$ is the pole of $CC'.$ Similarly, $A''$ is the pole of $AA',$ $B''$ is the pole of $BB'.$
Since their polars $AA', BB',$ and $CC'$ are concurrent (in the Gergonne point $\rm Ge$), the poles $A'', B'',$ and $C''$ are collinear to a line (the Gergonne line, naturally.)
GergonneLine[2].jpg

61

Threads

980

Posts

110K

Credits

Credits
10117

Show all posts

 Author| 乌贼 Posted at 2023-8-5 22:04:09

61

Threads

980

Posts

110K

Credits

Credits
10117

Show all posts

 Author| 乌贼 Posted at 2023-8-13 00:21:15
Last edited by 乌贼 at 2023-8-13 01:32:00题简洁搬过来
kuing.cjhb.site/forum.php?mod=viewthread& … 4&extra=page%3D1

61

Threads

980

Posts

110K

Credits

Credits
10117

Show all posts

 Author| 乌贼 Posted at 2023-8-14 01:45:38

61

Threads

980

Posts

110K

Credits

Credits
10117

Show all posts

 Author| 乌贼 Posted at 2023-8-15 00:07:02

61

Threads

980

Posts

110K

Credits

Credits
10117

Show all posts

 Author| 乌贼 Posted at 2023-11-11 11:37:50
题目: 34.png
   如图,直径$ AB $与弦$ CD $交于圆外一点$ P $,$ C,C_1 $关于$ AB $对称,$ E $为$ AB $与$ C_1D $交点。求证:$ \dfrac{OE}{OA}=\dfrac{BE}{PB} $
证明: 35.png
连接$ OC $,有\[ \angle CDE=\angle COE \]即$ CDOE $四点共园,由圆的割线定理得\[ PB\cdot PA=PC\cdot PD=PE\cdot PO \]展开\[ PB\cdot (PB+BE+OE+OA)=(PB+BE)\cdot (PB+BE+OE) \]整理后有\[  \dfrac{OE}{OA}=\dfrac{BE}{PB}  \]

手机版Mobile version|Leisure Math Forum

2025-4-21 14:24 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list