Forgot password?
 Create new account
View 3430|Reply 26

[几何] 三角形之内切圆

[Copy link]

61

Threads

980

Posts

110K

Credits

Credits
10117

Show all posts

乌贼 Posted at 2017-6-22 23:25:42 |Read mode
最近看了几道三角形内切圆题目,发觉其博大精深,也接触极点极线,这里主要收集资料及例题,并从初等几何方面看看作作,权当学习方家莫笑,也希望大家指点。
211.png
概念链接:
     baike.baidu.com/link?url=70cjs_SIYHGFKBL1LM-R … uPP-FtBkuqOUuk4MHK7K
性质链接:
    ziyuan.wmw.cn/WLKT/LWMWMZ/RJB/classonline/con … 11/html/274hb_16.htm
待续……

51

Threads

404

Posts

2896

Credits

Credits
2896
QQ

Show all posts

zhcosin Posted at 2017-6-23 13:52:46

61

Threads

980

Posts

110K

Credits

Credits
10117

Show all posts

 Author| 乌贼 Posted at 2017-6-23 18:58:58
回复 2# zhcosin
谢谢,英文,慢慢看。

61

Threads

980

Posts

110K

Credits

Credits
10117

Show all posts

 Author| 乌贼 Posted at 2017-6-25 15:50:22
$ \triangle ABC $中,$ D,E,F $分别为内切圆$ I $在$ BC,AC,AB $上的切点,$ H $为$ \triangle ABC $的垂心,$ Q $为$ A $点在$ BC $上的垂足,$ DP\perp EF $于$ P $。求证:$ \angle IPD=\angle DPH=\angle DIQ $
211.png

61

Threads

980

Posts

110K

Credits

Credits
10117

Show all posts

 Author| 乌贼 Posted at 2017-6-26 18:46:47
Last edited by 乌贼 at 2017-7-10 05:05:00一些结论:
1.$ \triangle ABC $内切圆$ I $对应边$ BC,CA,AB $上的切点分别为$ D,E,F $,$ DP\perp FE $于$ P $,$ AQ $为$ \triangle ABC $外接圆直径,则$ P,I,Q $三点共线。
211.png
2.$ \triangle ABC $内切圆$ I $对应边$ BC,CA,AB $上的切点分别为$ D,E,F $,$ DP\perp FE $于$ P $,$ AQ\perp BC $于$ Q $,$ H $为$ \triangle ABC $垂心,$ IQ $延长线交$ \triangle PID $外接圆于$ K $点。则$ P,H,K $三点共线。
211.png
3.$ \triangle ABC $内切圆$ I $对应边$ BC,AC,AB $上的切点分别为$ D,E,F $,$ DE $与$BA $的延长线交于点$ P $。则$ PI\perp FC $
211.png
4.$ I $为$ \triangle ABC $内心,$ AI $延长线交$ BC $于$ D $,$ BI $延长线交$ AC $于$ E $,$ DE $与$ BA $的延长线交于点$ P $。则$ PC\perp IC $
212.png

61

Threads

980

Posts

110K

Credits

Credits
10117

Show all posts

 Author| 乌贼 Posted at 2021-6-9 19:47:08

3147

Threads

8497

Posts

610K

Credits

Credits
66183
QQ

Show all posts

hbghlyj Posted at 2021-6-9 23:02:39

3147

Threads

8497

Posts

610K

Credits

Credits
66183
QQ

Show all posts

hbghlyj Posted at 2021-6-11 11:39:13
四边形ABCD内接于圆$\Gamma$,$I_1,I_2$分别是△ABC,△DBC的内心,M是$\Gamma$中弧BC的中点.$\Omega$是与$BI_1,CI_2,\Gamma$相切的圆,求证:$\triangle I_1I_2M$的外接圆与$\Omega$相切.
QQ图片20210611113719.jpg

61

Threads

980

Posts

110K

Credits

Credits
10117

Show all posts

 Author| 乌贼 Posted at 2021-6-13 18:41:06
回复 9# hbghlyj
纯几何吧我只看不作

61

Threads

980

Posts

110K

Credits

Credits
10117

Show all posts

 Author| 乌贼 Posted at 2021-6-29 04:23:56
回复 5# 乌贼
题3
如图: 311.png
$ L $为$ PI $与$ CF $的交点,连接$ IC $交$ DE $于$ Q $,连接$ FI,DI,FQ $。有\[ \triangle DQI\sim \triangle CDI\riff ID^2=IQ\cdot IC\riff IF^2=IQ\cdot IC\riff \triangle FIQ\sim \triangle CIF\\\riff \angle ICF=\angle IFQ \]又$ FIQP $四点共园,得\[ \angle ICF=\angle IFQ=\angle IPQ \]所以$ CQLP $四点共园,即\[ \angle PLC=\angle PQC=90\du  \]

3147

Threads

8497

Posts

610K

Credits

Credits
66183
QQ

Show all posts

hbghlyj Posted at 2021-6-29 22:26:36
回复 12# 乌贼
证明:C的极线DE经过P,F的极线AB极线AB经过P,所以CF是P的极线,所以PI⊥FC.

3147

Threads

8497

Posts

610K

Credits

Credits
66183
QQ

Show all posts

hbghlyj Posted at 2021-6-29 22:29:41
回复 5# 乌贼
4.证明:对完全四边形AECDBI有CD,CE调和分割CI,CP,所以CP是外角平分线,所以PC⊥IC.

61

Threads

980

Posts

110K

Credits

Credits
10117

Show all posts

 Author| 乌贼 Posted at 2021-7-19 19:57:30

61

Threads

980

Posts

110K

Credits

Credits
10117

Show all posts

 Author| 乌贼 Posted at 2021-8-24 05:16:54

801

Threads

4889

Posts

310K

Credits

Credits
36169

Show all posts

isee Posted at 2021-8-24 12:54:43
回复 16# 乌贼

建议先读读《高等几何》,如果线性代数忘得差不多了,就看朱德祥,朱维宗编的,有PDF的。

如果不想那么深入,看下《近代欧氏几何》亦可,单壿译的,这也是鸿篇巨制~

再不济就读读《几何变换与几何证题》,萧振纲著,相关章节是 反演变换

或者随便网上看看调和点列及应用,总之,这块东西实在是太多了,且有趣,且易忘记,哈哈哈哈哈

61

Threads

980

Posts

110K

Credits

Credits
10117

Show all posts

 Author| 乌贼 Posted at 2021-8-24 22:05:03
回复 17# isee


功力不够,怕走火入魔。先学习调和极线级点。

801

Threads

4889

Posts

310K

Credits

Credits
36169

Show all posts

isee Posted at 2021-8-24 22:17:50
回复 18# 乌贼

高等几何里全有哇,就是高等几何研究的对象,系列讲的,不会走的

61

Threads

980

Posts

110K

Credits

Credits
10117

Show all posts

 Author| 乌贼 Posted at 2023-3-3 00:29:52

3147

Threads

8497

Posts

610K

Credits

Credits
66183
QQ

Show all posts

hbghlyj Posted at 2023-3-3 01:17:38
可以建立一个淘专辑

Comment

你有空也建几个专辑呗😌  Posted at 2023-3-3 03:54

3147

Threads

8497

Posts

610K

Credits

Credits
66183
QQ

Show all posts

hbghlyj Posted at 2023-4-17 23:51:56
AOPS
Geometry Unbound Problems for Section 11.5

Let $I$ be the incenter of triangle $ABC$. Let $K,L$ and $M$ be the points of tangency of the incircle of $ABC$ with $AB,BC$ and $CA$, respectively. The line $t$ passes through $B$ and is parallel to $KL$. The lines $MK$ and $ML$ intersect $t$ at the points $R$ and $S$. Prove that $\angle RIS$ is acute.
Evan Chen, §2.2 IMO 1998/5

First simple proof (grobber)
The problem is equivalent to showing $BI^2 > BR \cdot BS$.
But from
\[ \triangle BRK \sim \triangle MKL \sim \triangle BLS \]
we conclude
\[ BR = t \cdot \frac{MK}{ML},
  \qquad BS = t \cdot \frac{ML}{MK} \]
where $t = BK  = BL$ is the length of the tangent from $B$.
Hence $BR \cdot BS = t^2$.
Since $BI > t$ is clear, we are done.

Second projective proof
Let $N$ be the midpoint of $\overline{KL}$, and let ray $MN$ meet the incircle again at $P$.

Note that line $\overline{RBS}$ is the polar of $N$.
By Brokard's theorem, lines $MK$ and $PL$ should thus meet the polar of $N$, so we conclude $R = \overline{MK} \cap \overline{PL}$.
Analogously, $S = \overline{ML} \cap \overline{PK}$.

Again by Brokard's theorem, $\triangle NRS$ is self-polar, so $N$ is the orthocenter of $\triangle RIS$.
Since $N$ lies between $I$ and $B$ we are done.

手机版Mobile version|Leisure Math Forum

2025-4-21 01:30 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list