Forgot password
 Register account
View 562|Reply 3

[几何] 双曲三角形内切圆半径$\le\tanh^{-1} (1/2)$

[Copy link]

3200

Threads

7827

Posts

52

Reputation

Show all posts

hbghlyj posted 2025-3-10 22:48 |Read mode
并非所有双曲平面上的三角形都有一个包含该三角形并通过其所有三个顶点的圆。换句话说,外接圆不是三角形的普遍性质。

那么内切圆呢?每个三角形确实都有一个唯一的最大圆包含在其中,内切圆的中心总是角平分线的交点。
在双曲几何中,所有三角形都有一个内切圆,其中心位于三角形的所有三个角平分线上。
问题:如何证明这个内切圆的半径不大于 $\tanh^{-1} (1/2) \approx 0.5493$
Definitions using triangles
$\mathbb H^2$ is $\ln(2)$-hyperbolic
Delta_thin_triangle_condition (1).svg

3200

Threads

7827

Posts

52

Reputation

Show all posts

original poster hbghlyj posted 2025-3-10 22:58
如图,如何证明?
Lecture16.jpg

3200

Threads

7827

Posts

52

Reputation

Show all posts

original poster hbghlyj posted 2025-3-16 04:16
$\tanh ^{-1}\left(\frac{1}{2}\right)=\frac{\log (3)}{2}$,不是$\log2$呀?

3200

Threads

7827

Posts

52

Reputation

Show all posts

original poster hbghlyj posted 2025-4-29 18:54
14. The Sixth Model: Hence it follows that every point on one side of the triangle is within distance at most 8 of the union of the two opposite sides of the triangle. Thus triangles in this model are said to be 8-thin. (In hyperbolic space, we saw that triangles are $\log (1+\sqrt{2})$-thin in this sense.)
4.10. Inscribed radius and thinness of hyperbolic triangles: For every geodesic triangle $S$ in $\mathbb{H}^n, \delta(S) \leqslant \operatorname{arccosh}(\sqrt{2})$.

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-15 15:06 GMT+8

Powered by Discuz!

Processed in 0.019175 seconds, 44 queries