|
hbghlyj
Posted at 2025-4-10 22:23:18
Last edited by hbghlyj at 2025-4-11 01:06:18高联一百题解答
第二十四题 $\triangle ABC$ 内切圆 $\odot I$ 切 BC 于 $D, AE \perp BC$ 于 $E, F$ 为弧中点,DF 交 $\odot$ $I$ 于 $G$,作 $\triangle B C G$ 的外接圆 $\odot O$,求证:$\odot O, \odot I$ 相切于点 $G$.
%20at%20(-3,0);%0A%5Ccoordinate%20(C)%20at%20(3,0);%0A%5Ccoordinate%20(A)%20at%20(1.5,3.3);%0A%5Cdraw%20(A)%20--%20(B)%20--%20(C)%20--%20cycle;%0A%5Cdraw%5Bname%20path=circle%5D%20let%20%5Cp1=(%24(B)-(A)%24),%20%5Cp2=(%24(C)-(A)%24),%5Cp3=(%24(B)-(C)%24),%0A%5Cn3=%7Bveclen(%5Cx1,%5Cy1)%7D,%20%25%20length%20AB%0A%5Cn4=%7Bveclen(%5Cx2,%5Cy2)%7D,%20%25%20length%20AC%0A%5Cn5=%7Bveclen(%5Cx3,%5Cy3)%7D,%20%25%20length%20BC%0A%5Cn6=%7B%5Cn3+%5Cn4+%5Cn5%7D,%0A%5Cn1=%7B0.5*%5Cn6%7D,%0A%5Cn2=%7Bsqrt(((%5Cn1-%5Cn3)%2F%5Cn1))*sqrt((%5Cn1-%5Cn4)*(%5Cn1-%5Cn5))%7D%0A%20%20%20%20in%20coordinate(I)at(%24%5Cn5%2F%5Cn6*(A)+%5Cn4%2F%5Cn6*(B)+%5Cn3%2F%5Cn6*(C)%24)%0A(I)circle(%5Cn2);%0A%5Cfill%20(I)%20circle%20(1.5pt)%20node%5Bleft%5D%20%7B%24I%24%7D;%0A%25%20Incircle%20touches%20BC%20at%20K%20(vertical%20projection%20of%20I%20onto%20BC):%0A%5Ccoordinate(K)at(%24(B)!(I)!(C)%24);%0A%5Cfill%20(K)%20circle%20(1.5pt)%20node%5Bbelow%5D%20%7B%24D%24%7D;%0A%0A%25%20Altitude%20from%20A%20to%20BC.%0A%5Ccoordinate%20(D)%20at%20(%24(B)!(A)!(C)%24);%0A%5Cdraw%20(A)%20--%20(D);%0A%5Cpath%5Bname%20path=AK%5D(A)--(K);%0A%5Cpath%5Bname%20intersections=%7Bof=circle%20and%20AK,by=J%7D%5D;%5Cdraw%5Bdashed%5D(A)--(K);%0A%5Cfill%20(D)%20circle%20(1.5pt)%20node%5Bbelow%5D%20%7B%24E%24%7D;%0A%5Cfill%20(J)%20circle%20(1.5pt)%20node%5Babove%20right%5D%20%7B%24J%24%7D;%20%20%0A%25%20Midpoint%20M%20of%20altitude%20AD:%0A%5Ccoordinate%20(M)%20at%20(%24(A)!0.5!(D)%24);%0A%5Cfill%20(M)%20circle%20(1.5pt)%20node%5Bright%5D%20%7B%24F%24%7D;%0A%5Cpath%5Bname%20path=KM%5D(%24(K)!0.5!(M)%24)--(%24(K)!2!(M)%24);%0A%0A%25%20The%20line%20KM%20meets%20the%20incircle%20a%20second%20time%20at%20N.%0A%25%20N%20determined%20from%20the%20intersection%20of%20line%20KM%20with%20the%20incircle%20(besides%20K):%0A%5Cpath%20%5Bname%20intersections=%7Bof=KM%20and%20circle,by=N%7D%5D;%0A%5Cfill%20(N)%20circle%20(1.5pt)%20node%5Babove%20right%5D%20%7B%24G%24%7D;%0A%25%20P%20is%20defined%20as%20the%20intersection%20of%20line%20KN%20and%20the%20perpendicular%20bisector%20of%20BC.%0A%5Ccoordinate%20(P)%20at%20(intersection%20of%20K--N%20and%20%7B%24(0,0)!0.5!90:(B)%24%7D--%7B(0,0)%7D);%0A%5Cdraw%20(N)%20--(K);%5Cdraw%5Bdashed%5D(K)--%20(P);%0A%5Cfill%20(P)%20circle%20(1.5pt)%20node%5Bbelow%5D%20%7B%24N%24%7D;%0A%0A%25%20X%20is%20defined%20as%20the%20intersection%20of%20the%20perpendicular%20bisector%20of%20NP%20and%20BC.%0A%5Ccoordinate(NPmid)%20at%20(%24(N)!0.5!(P)%24);%0A%5Ccoordinate%20(X)%20at%20(intersection%20of%20NPmid--%24(NPmid)!1cm!90:(N)%24%20and%20%7B(0,0)%7D--P);%0A%5Cfill%20(X)%20circle%20(1.5pt)%20node%5Bbelow%20right%5D%20%7B%24O%24%7D;%0A%5Cnode%20%5Bdraw,circle%20through=%7B(P)%7D%5D%20at%20(X)%20%7B%7D;%0A%0A%5Cfill%20(A)%20circle%20(1.5pt)%20node%5Babove%5D%20%7B%24A%24%7D;%0A%5Cfill%20(B)%20circle%20(1.5pt)%20node%5Bleft%5D%20%7B%24B%24%7D;%0A%5Cfill%20(C)%20circle%20(1.5pt)%20node%5Bright%5D%20%7B%24C%24%7D;%0A%5Cdraw%5Bdashed%5D(N)--(X)--(P);%0A%5Ccoordinate(K%27)at(%24(K)!2!(I)%24);%0A%5Cfill%20(K%27)%20circle%20(1.5pt)%20node%5Bbelow%20left%5D%20%7B%24K%24%7D;%0A%5Ccoordinate(M)at(intersection%20of%20I--%7B%24(K)!0.5!(J)%24%7D%20and%20B--C);%0A%5Cfill%20(M)%20circle%20(1.5pt)%20node%5Bbelow%5D%20%7B%24M%24%7D;%0A%5Cdraw%5Bdashed%5D(K)--(K%27)--(M)(J)--(M)--(C);%0A%5Cend%7Btikzpicture%7D)
证明方法一:如图,连接 $A D$ 交 $\odot I$ 于 $J$,延长 $D I$ 交 $\odot I$ 于 $K$,因为 $D K \px A E$,且 $D G$ 平分 AE ,所以 $D K, ~ D G, ~ D J, ~ D C$ 是一组调和线束,所以四边形 $D K J G$ 是一个调和四边形。过 $J$作 $\odot I$ 切线交 $B C$ 于 $M$,则 $M, ~ D, ~ C, ~ B$ 是一组调和点列,且 $K, ~ G, ~ M$ 三点共线,所以 $D G \perp$ $G M$,所以 $G D$ 平分 $\angle B G C$.延长 $G D$ 交 $\odot O$ 于 $N$,则 $N$ 为弧 $B C$ 中点,所以 $O N \px I D$,所以 $O, I,G$ 三点共线,所以 $\odot O, \odot I$ 相切于点 $G$.
证明方法二:如图,作 $\triangle ABC$ 的 A-旁切圆 $\odot J$ ,设 $\odot J$ 切 BC 于 T ,则 $CT=BD$。延长 AD交 $\odot J$ 于 $L$ ,根据位似关系知 $T L$ 为 $\odot J$ 直径。注意到 $J$ 为 $L T$ 中点,$F$ 为 $A E$ 中点,且 $L T\px A E$ ,所以 $J, ~ D, ~ F, ~ G$ 四点共线。
作 $I S \perp G D$ 于 $S$ ,则 $S$ 为 $G D$ 中点。因为 $\angle I S J=\angle I B J=\angle I C J$ ,所以 $I, ~ S, ~ B, ~ J, ~ C$ 五点共圆。取 $D J$ 中点为 $M$,则 $B D \cdot C D=S D \cdot J D=F D \cdot M D$,所以 $G, ~ B, ~ M, ~ C$ 四点共圆。作 $M N \perp B C$ 于 $N$,则 $N$ 为 $D T$ 中点,进而知 $N$ 为 $B C$ 中点,于是知 $M B=M C$,故 $G M$ 平分 $\angle B G C$,从而知 $\odot O,\odot I$ 相切于点 $G$。
%20at%20(-3,0);%0A%5Ccoordinate%20(C)%20at%20(3,0);%0A%5Ccoordinate%20(A)%20at%20(2.5,3.3);%0A%5Cdraw%20(A)%20--%20(B)%20--%20(C)%20--%20cycle;%0A%5Cdraw%5Bname%20path=circle%5D%20let%20%5Cp1=(%24(B)-(A)%24),%20%5Cp2=(%24(C)-(A)%24),%5Cp3=(%24(B)-(C)%24),%0A%5Cn3=%7Bveclen(%5Cx1,%5Cy1)%7D,%20%25%20length%20AB%0A%5Cn4=%7Bveclen(%5Cx2,%5Cy2)%7D,%20%25%20length%20AC%0A%5Cn5=%7Bveclen(%5Cx3,%5Cy3)%7D,%20%25%20length%20BC%0A%5Cn6=%7B%5Cn3+%5Cn4+%5Cn5%7D,%0A%5Cn7=%7B%5Cn3+%5Cn4-%5Cn5%7D,%0A%5Cn1=%7B0.5*%5Cn6%7D,%0A%5Cn2=%7Bsqrt(((%5Cn1-%5Cn3)%2F%5Cn1))*sqrt((%5Cn1-%5Cn4)*(%5Cn1-%5Cn5))%7D,%0A%5Cn8=%7Bsqrt(%5Cn1*(%5Cn1-%5Cn3))*sqrt((%5Cn1-%5Cn4)%2F(%5Cn1-%5Cn5))%7D%0A%20%20%20%20in%20coordinate(I)at(%24%5Cn5%2F%5Cn6*(A)+%5Cn4%2F%5Cn6*(B)+%5Cn3%2F%5Cn6*(C)%24)%0A(I)circle(%5Cn2)%0Acoordinate(J)at(%24%7B-(%5Cn5%2F%5Cn7)%7D*(A)+%7B(%5Cn4%2F%5Cn7)%7D*(B)+%7B(%5Cn3%2F%5Cn7)%7D*(C)%24)%0A(J)circle(%5Cn8);%0A%5Cfill%20(I)%20circle%20(1.5pt)%20node%5Bleft%5D%20%7B%24I%24%7D;%0A%25%20Incircle%20touches%20BC%20at%20K%20(vertical%20projection%20of%20I%20onto%20BC):%0A%5Ccoordinate(K)at(%24(B)!(I)!(C)%24);%0A%5Cfill%20(K)%20circle%20(1.5pt)%20node%5Bbelow%5D%20%7B%24D%24%7D;%0A%0A%25%20Altitude%20from%20A%20to%20BC.%0A%5Ccoordinate%20(D)%20at%20(%24(B)!(A)!(C)%24);%0A%5Cdraw%20(A)%20--%20(D);%0A%5Cpath%5Bname%20path=AK%5D(A)--(K);%0A%5Cfill%20(D)%20circle%20(1.5pt)%20node%5Bbelow%5D%20%7B%24E%24%7D;%0A%25%20Midpoint%20M%20of%20altitude%20AD:%0A%5Ccoordinate%20(M)%20at%20(%24(A)!0.5!(D)%24);%0A%5Cfill%20(M)%20circle%20(1.5pt)%20node%5Bbelow%5D%20%7B%24F%24%7D;%0A%5Cpath%5Bname%20path=KM%5D(%24(K)!0.5!(M)%24)--(%24(K)!2!(M)%24);%0A%0A%25%20The%20line%20KM%20meets%20the%20incircle%20a%20second%20time%20at%20N.%0A%25%20N%20determined%20from%20the%20intersection%20of%20line%20KM%20with%20the%20incircle%20(besides%20K):%0A%5Cpath%20%5Bname%20intersections=%7Bof=KM%20and%20circle,by=N%7D%5D;%0A%5Cfill%20(N)%20circle%20(1.5pt)%20node%5Babove%20right%5D%20%7B%24G%24%7D;%0A%25%20P%20is%20defined%20as%20the%20intersection%20of%20line%20KN%20and%20the%20perpendicular%20bisector%20of%20BC.%0A%5Ccoordinate%20(P)%20at%20(intersection%20of%20K--N%20and%20%7B%24(0,0)!0.5!90:(B)%24%7D--%7B(0,0)%7D);%0A%5Cdraw%20(N)%20--(K);%5Cdraw%5Bdashed%5D(K)--%20(J);%0A%5Cfill%20(P)%20circle%20(1.5pt)%20node%5Bbelow%5D%20%7B%24M%24%7D;%0A%0A%25%20X%20is%20defined%20as%20the%20intersection%20of%20the%20perpendicular%20bisector%20of%20NP%20and%20BC.%0A%5Ccoordinate(NPmid)%20at%20(%24(N)!0.5!(P)%24);%0A%5Ccoordinate%20(X)%20at%20(intersection%20of%20NPmid--%24(NPmid)!1cm!90:(N)%24%20and%20%7B(0,0)%7D--P);%0A%5Cfill%20(X)%20circle%20(1.5pt)%20node%5Babove%20left%5D%20%7B%24O%24%7D;%0A%5Cnode%20%5Bdraw,circle%20through=%7B(P)%7D%5D%20at%20(X)%20%7B%7D;%0A%0A%5Cfill%20(A)%20circle%20(1.5pt)%20node%5Babove%5D%20%7B%24A%24%7D;%0A%5Cfill%20(B)%20circle%20(1.5pt)%20node%5Bleft%5D%20%7B%24B%24%7D;%0A%5Cfill%20(C)%20circle%20(1.5pt)%20node%5Bright%5D%20%7B%24C%24%7D;%0A%5Cdraw%5Bdashed%5D(N)--(X)--(P);%0A%5Cfill(J)%20circle%20(1pt)%20node%5Bleft%5D%20%7B%24J%24%7D;%0A%25%20Excircle%20touches%20BC%20at%20T%20(vertical%20projection%20of%20J%20onto%20BC):%0A%5Ccoordinate(T)at(%24(B)!(J)!(C)%24);%0A%5Cfill(T)%20circle%20(1.5pt)%20node%5Bbelow%5D%20%7B%24T%24%7D;%0A%5Ccoordinate(L)at(%24(T)!2!(J)%24);%0A%5Cfill(L)%20circle%20(1.5pt)%20node%5Bbelow%5D%20%7B%24L%24%7D;%0A%5Ccoordinate(S)at(%24(N)!(I)!(K)%24);%0A%5Cdraw%5Bdashed%5D(A)--(L)--(T)(I)--(S);%0A%5Cfill(S)%20circle%20(1.5pt)%20node%5Bbelow%5D%20%7B%24S%24%7D;%0A%5Cfill(intersection%20of%20O--P%20and%20B--C)%20circle%20(1.5pt)%20node%5Bbelow%5D%20%7B%24N%24%7D;%0A%5Cend%7Btikzpicture%7D) |
|